Search

NaOH + Na2SO3 + NaMnO4 = H2O + Na2SO4 + Na2MnO4

Input interpretation

NaOH sodium hydroxide + Na_2SO_3 sodium sulfite + NaMnO_4 sodium permanganate ⟶ H_2O water + Na_2SO_4 sodium sulfate + Na2MnO4
NaOH sodium hydroxide + Na_2SO_3 sodium sulfite + NaMnO_4 sodium permanganate ⟶ H_2O water + Na_2SO_4 sodium sulfate + Na2MnO4

Balanced equation

Balance the chemical equation algebraically: NaOH + Na_2SO_3 + NaMnO_4 ⟶ H_2O + Na_2SO_4 + Na2MnO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 Na_2SO_3 + c_3 NaMnO_4 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 Na2MnO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O, S and Mn: H: | c_1 = 2 c_4 Na: | c_1 + 2 c_2 + c_3 = 2 c_5 + 2 c_6 O: | c_1 + 3 c_2 + 4 c_3 = c_4 + 4 c_5 + 4 c_6 S: | c_2 = c_5 Mn: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 2 c_4 = 1 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 2 NaOH + Na_2SO_3 + 2 NaMnO_4 ⟶ H_2O + Na_2SO_4 + 2 Na2MnO4
Balance the chemical equation algebraically: NaOH + Na_2SO_3 + NaMnO_4 ⟶ H_2O + Na_2SO_4 + Na2MnO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 Na_2SO_3 + c_3 NaMnO_4 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 Na2MnO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O, S and Mn: H: | c_1 = 2 c_4 Na: | c_1 + 2 c_2 + c_3 = 2 c_5 + 2 c_6 O: | c_1 + 3 c_2 + 4 c_3 = c_4 + 4 c_5 + 4 c_6 S: | c_2 = c_5 Mn: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 2 c_4 = 1 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 NaOH + Na_2SO_3 + 2 NaMnO_4 ⟶ H_2O + Na_2SO_4 + 2 Na2MnO4

Structures

 + + ⟶ + + Na2MnO4
+ + ⟶ + + Na2MnO4

Names

sodium hydroxide + sodium sulfite + sodium permanganate ⟶ water + sodium sulfate + Na2MnO4
sodium hydroxide + sodium sulfite + sodium permanganate ⟶ water + sodium sulfate + Na2MnO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: NaOH + Na_2SO_3 + NaMnO_4 ⟶ H_2O + Na_2SO_4 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 NaOH + Na_2SO_3 + 2 NaMnO_4 ⟶ H_2O + Na_2SO_4 + 2 Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 2 | -2 Na_2SO_3 | 1 | -1 NaMnO_4 | 2 | -2 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 Na2MnO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 2 | -2 | ([NaOH])^(-2) Na_2SO_3 | 1 | -1 | ([Na2SO3])^(-1) NaMnO_4 | 2 | -2 | ([NaMnO4])^(-2) H_2O | 1 | 1 | [H2O] Na_2SO_4 | 1 | 1 | [Na2SO4] Na2MnO4 | 2 | 2 | ([Na2MnO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([NaOH])^(-2) ([Na2SO3])^(-1) ([NaMnO4])^(-2) [H2O] [Na2SO4] ([Na2MnO4])^2 = ([H2O] [Na2SO4] ([Na2MnO4])^2)/(([NaOH])^2 [Na2SO3] ([NaMnO4])^2)
Construct the equilibrium constant, K, expression for: NaOH + Na_2SO_3 + NaMnO_4 ⟶ H_2O + Na_2SO_4 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 NaOH + Na_2SO_3 + 2 NaMnO_4 ⟶ H_2O + Na_2SO_4 + 2 Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 2 | -2 Na_2SO_3 | 1 | -1 NaMnO_4 | 2 | -2 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 Na2MnO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 2 | -2 | ([NaOH])^(-2) Na_2SO_3 | 1 | -1 | ([Na2SO3])^(-1) NaMnO_4 | 2 | -2 | ([NaMnO4])^(-2) H_2O | 1 | 1 | [H2O] Na_2SO_4 | 1 | 1 | [Na2SO4] Na2MnO4 | 2 | 2 | ([Na2MnO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([NaOH])^(-2) ([Na2SO3])^(-1) ([NaMnO4])^(-2) [H2O] [Na2SO4] ([Na2MnO4])^2 = ([H2O] [Na2SO4] ([Na2MnO4])^2)/(([NaOH])^2 [Na2SO3] ([NaMnO4])^2)

Rate of reaction

Construct the rate of reaction expression for: NaOH + Na_2SO_3 + NaMnO_4 ⟶ H_2O + Na_2SO_4 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 NaOH + Na_2SO_3 + 2 NaMnO_4 ⟶ H_2O + Na_2SO_4 + 2 Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 2 | -2 Na_2SO_3 | 1 | -1 NaMnO_4 | 2 | -2 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 Na2MnO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 2 | -2 | -1/2 (Δ[NaOH])/(Δt) Na_2SO_3 | 1 | -1 | -(Δ[Na2SO3])/(Δt) NaMnO_4 | 2 | -2 | -1/2 (Δ[NaMnO4])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) Na2MnO4 | 2 | 2 | 1/2 (Δ[Na2MnO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/2 (Δ[NaOH])/(Δt) = -(Δ[Na2SO3])/(Δt) = -1/2 (Δ[NaMnO4])/(Δt) = (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = 1/2 (Δ[Na2MnO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: NaOH + Na_2SO_3 + NaMnO_4 ⟶ H_2O + Na_2SO_4 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 NaOH + Na_2SO_3 + 2 NaMnO_4 ⟶ H_2O + Na_2SO_4 + 2 Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 2 | -2 Na_2SO_3 | 1 | -1 NaMnO_4 | 2 | -2 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 Na2MnO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 2 | -2 | -1/2 (Δ[NaOH])/(Δt) Na_2SO_3 | 1 | -1 | -(Δ[Na2SO3])/(Δt) NaMnO_4 | 2 | -2 | -1/2 (Δ[NaMnO4])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) Na2MnO4 | 2 | 2 | 1/2 (Δ[Na2MnO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[NaOH])/(Δt) = -(Δ[Na2SO3])/(Δt) = -1/2 (Δ[NaMnO4])/(Δt) = (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = 1/2 (Δ[Na2MnO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sodium hydroxide | sodium sulfite | sodium permanganate | water | sodium sulfate | Na2MnO4 formula | NaOH | Na_2SO_3 | NaMnO_4 | H_2O | Na_2SO_4 | Na2MnO4 Hill formula | HNaO | Na_2O_3S | MnNaO_4 | H_2O | Na_2O_4S | MnNa2O4 name | sodium hydroxide | sodium sulfite | sodium permanganate | water | sodium sulfate |  IUPAC name | sodium hydroxide | disodium sulfite | sodium permanganate | water | disodium sulfate |
| sodium hydroxide | sodium sulfite | sodium permanganate | water | sodium sulfate | Na2MnO4 formula | NaOH | Na_2SO_3 | NaMnO_4 | H_2O | Na_2SO_4 | Na2MnO4 Hill formula | HNaO | Na_2O_3S | MnNaO_4 | H_2O | Na_2O_4S | MnNa2O4 name | sodium hydroxide | sodium sulfite | sodium permanganate | water | sodium sulfate | IUPAC name | sodium hydroxide | disodium sulfite | sodium permanganate | water | disodium sulfate |

Substance properties

 | sodium hydroxide | sodium sulfite | sodium permanganate | water | sodium sulfate | Na2MnO4 molar mass | 39.997 g/mol | 126.04 g/mol | 141.92 g/mol | 18.015 g/mol | 142.04 g/mol | 164.91 g/mol phase | solid (at STP) | solid (at STP) | liquid (at STP) | liquid (at STP) | solid (at STP) |  melting point | 323 °C | 500 °C | | 0 °C | 884 °C |  boiling point | 1390 °C | | 100 °C | 99.9839 °C | 1429 °C |  density | 2.13 g/cm^3 | 2.63 g/cm^3 | 1.391 g/cm^3 | 1 g/cm^3 | 2.68 g/cm^3 |  solubility in water | soluble | | | | soluble |  surface tension | 0.07435 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.004 Pa s (at 350 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | | | | odorless | |
| sodium hydroxide | sodium sulfite | sodium permanganate | water | sodium sulfate | Na2MnO4 molar mass | 39.997 g/mol | 126.04 g/mol | 141.92 g/mol | 18.015 g/mol | 142.04 g/mol | 164.91 g/mol phase | solid (at STP) | solid (at STP) | liquid (at STP) | liquid (at STP) | solid (at STP) | melting point | 323 °C | 500 °C | | 0 °C | 884 °C | boiling point | 1390 °C | | 100 °C | 99.9839 °C | 1429 °C | density | 2.13 g/cm^3 | 2.63 g/cm^3 | 1.391 g/cm^3 | 1 g/cm^3 | 2.68 g/cm^3 | solubility in water | soluble | | | | soluble | surface tension | 0.07435 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.004 Pa s (at 350 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | | | | odorless | |

Units