Search

KOH + H2O2 + AgNO3 = H2O + O2 + KNO3 + Ag

Input interpretation

KOH potassium hydroxide + H_2O_2 hydrogen peroxide + AgNO_3 silver nitrate ⟶ H_2O water + O_2 oxygen + KNO_3 potassium nitrate + Ag silver
KOH potassium hydroxide + H_2O_2 hydrogen peroxide + AgNO_3 silver nitrate ⟶ H_2O water + O_2 oxygen + KNO_3 potassium nitrate + Ag silver

Balanced equation

Balance the chemical equation algebraically: KOH + H_2O_2 + AgNO_3 ⟶ H_2O + O_2 + KNO_3 + Ag Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KOH + c_2 H_2O_2 + c_3 AgNO_3 ⟶ c_4 H_2O + c_5 O_2 + c_6 KNO_3 + c_7 Ag Set the number of atoms in the reactants equal to the number of atoms in the products for H, K, O, Ag and N: H: | c_1 + 2 c_2 = 2 c_4 K: | c_1 = c_6 O: | c_1 + 2 c_2 + 3 c_3 = c_4 + 2 c_5 + 3 c_6 Ag: | c_3 = c_7 N: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_2 = 1 c_3 = c_1 c_4 = c_1/2 + 1 c_5 = c_1/4 + 1/2 c_6 = c_1 c_7 = c_1 The resulting system of equations is still underdetermined, so an additional coefficient must be set arbitrarily. Set c_1 = 2 and solve for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 2 c_4 = 2 c_5 = 1 c_6 = 2 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 2 KOH + H_2O_2 + 2 AgNO_3 ⟶ 2 H_2O + O_2 + 2 KNO_3 + 2 Ag
Balance the chemical equation algebraically: KOH + H_2O_2 + AgNO_3 ⟶ H_2O + O_2 + KNO_3 + Ag Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KOH + c_2 H_2O_2 + c_3 AgNO_3 ⟶ c_4 H_2O + c_5 O_2 + c_6 KNO_3 + c_7 Ag Set the number of atoms in the reactants equal to the number of atoms in the products for H, K, O, Ag and N: H: | c_1 + 2 c_2 = 2 c_4 K: | c_1 = c_6 O: | c_1 + 2 c_2 + 3 c_3 = c_4 + 2 c_5 + 3 c_6 Ag: | c_3 = c_7 N: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_2 = 1 c_3 = c_1 c_4 = c_1/2 + 1 c_5 = c_1/4 + 1/2 c_6 = c_1 c_7 = c_1 The resulting system of equations is still underdetermined, so an additional coefficient must be set arbitrarily. Set c_1 = 2 and solve for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 2 c_4 = 2 c_5 = 1 c_6 = 2 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 KOH + H_2O_2 + 2 AgNO_3 ⟶ 2 H_2O + O_2 + 2 KNO_3 + 2 Ag

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

potassium hydroxide + hydrogen peroxide + silver nitrate ⟶ water + oxygen + potassium nitrate + silver
potassium hydroxide + hydrogen peroxide + silver nitrate ⟶ water + oxygen + potassium nitrate + silver

Equilibrium constant

Construct the equilibrium constant, K, expression for: KOH + H_2O_2 + AgNO_3 ⟶ H_2O + O_2 + KNO_3 + Ag Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 KOH + H_2O_2 + 2 AgNO_3 ⟶ 2 H_2O + O_2 + 2 KNO_3 + 2 Ag Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 2 | -2 H_2O_2 | 1 | -1 AgNO_3 | 2 | -2 H_2O | 2 | 2 O_2 | 1 | 1 KNO_3 | 2 | 2 Ag | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KOH | 2 | -2 | ([KOH])^(-2) H_2O_2 | 1 | -1 | ([H2O2])^(-1) AgNO_3 | 2 | -2 | ([AgNO3])^(-2) H_2O | 2 | 2 | ([H2O])^2 O_2 | 1 | 1 | [O2] KNO_3 | 2 | 2 | ([KNO3])^2 Ag | 2 | 2 | ([Ag])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([KOH])^(-2) ([H2O2])^(-1) ([AgNO3])^(-2) ([H2O])^2 [O2] ([KNO3])^2 ([Ag])^2 = (([H2O])^2 [O2] ([KNO3])^2 ([Ag])^2)/(([KOH])^2 [H2O2] ([AgNO3])^2)
Construct the equilibrium constant, K, expression for: KOH + H_2O_2 + AgNO_3 ⟶ H_2O + O_2 + KNO_3 + Ag Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 KOH + H_2O_2 + 2 AgNO_3 ⟶ 2 H_2O + O_2 + 2 KNO_3 + 2 Ag Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 2 | -2 H_2O_2 | 1 | -1 AgNO_3 | 2 | -2 H_2O | 2 | 2 O_2 | 1 | 1 KNO_3 | 2 | 2 Ag | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KOH | 2 | -2 | ([KOH])^(-2) H_2O_2 | 1 | -1 | ([H2O2])^(-1) AgNO_3 | 2 | -2 | ([AgNO3])^(-2) H_2O | 2 | 2 | ([H2O])^2 O_2 | 1 | 1 | [O2] KNO_3 | 2 | 2 | ([KNO3])^2 Ag | 2 | 2 | ([Ag])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([KOH])^(-2) ([H2O2])^(-1) ([AgNO3])^(-2) ([H2O])^2 [O2] ([KNO3])^2 ([Ag])^2 = (([H2O])^2 [O2] ([KNO3])^2 ([Ag])^2)/(([KOH])^2 [H2O2] ([AgNO3])^2)

Rate of reaction

Construct the rate of reaction expression for: KOH + H_2O_2 + AgNO_3 ⟶ H_2O + O_2 + KNO_3 + Ag Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 KOH + H_2O_2 + 2 AgNO_3 ⟶ 2 H_2O + O_2 + 2 KNO_3 + 2 Ag Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 2 | -2 H_2O_2 | 1 | -1 AgNO_3 | 2 | -2 H_2O | 2 | 2 O_2 | 1 | 1 KNO_3 | 2 | 2 Ag | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KOH | 2 | -2 | -1/2 (Δ[KOH])/(Δt) H_2O_2 | 1 | -1 | -(Δ[H2O2])/(Δt) AgNO_3 | 2 | -2 | -1/2 (Δ[AgNO3])/(Δt) H_2O | 2 | 2 | 1/2 (Δ[H2O])/(Δt) O_2 | 1 | 1 | (Δ[O2])/(Δt) KNO_3 | 2 | 2 | 1/2 (Δ[KNO3])/(Δt) Ag | 2 | 2 | 1/2 (Δ[Ag])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/2 (Δ[KOH])/(Δt) = -(Δ[H2O2])/(Δt) = -1/2 (Δ[AgNO3])/(Δt) = 1/2 (Δ[H2O])/(Δt) = (Δ[O2])/(Δt) = 1/2 (Δ[KNO3])/(Δt) = 1/2 (Δ[Ag])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: KOH + H_2O_2 + AgNO_3 ⟶ H_2O + O_2 + KNO_3 + Ag Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 KOH + H_2O_2 + 2 AgNO_3 ⟶ 2 H_2O + O_2 + 2 KNO_3 + 2 Ag Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 2 | -2 H_2O_2 | 1 | -1 AgNO_3 | 2 | -2 H_2O | 2 | 2 O_2 | 1 | 1 KNO_3 | 2 | 2 Ag | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KOH | 2 | -2 | -1/2 (Δ[KOH])/(Δt) H_2O_2 | 1 | -1 | -(Δ[H2O2])/(Δt) AgNO_3 | 2 | -2 | -1/2 (Δ[AgNO3])/(Δt) H_2O | 2 | 2 | 1/2 (Δ[H2O])/(Δt) O_2 | 1 | 1 | (Δ[O2])/(Δt) KNO_3 | 2 | 2 | 1/2 (Δ[KNO3])/(Δt) Ag | 2 | 2 | 1/2 (Δ[Ag])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[KOH])/(Δt) = -(Δ[H2O2])/(Δt) = -1/2 (Δ[AgNO3])/(Δt) = 1/2 (Δ[H2O])/(Δt) = (Δ[O2])/(Δt) = 1/2 (Δ[KNO3])/(Δt) = 1/2 (Δ[Ag])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | potassium hydroxide | hydrogen peroxide | silver nitrate | water | oxygen | potassium nitrate | silver formula | KOH | H_2O_2 | AgNO_3 | H_2O | O_2 | KNO_3 | Ag Hill formula | HKO | H_2O_2 | AgNO_3 | H_2O | O_2 | KNO_3 | Ag name | potassium hydroxide | hydrogen peroxide | silver nitrate | water | oxygen | potassium nitrate | silver IUPAC name | potassium hydroxide | hydrogen peroxide | silver nitrate | water | molecular oxygen | potassium nitrate | silver
| potassium hydroxide | hydrogen peroxide | silver nitrate | water | oxygen | potassium nitrate | silver formula | KOH | H_2O_2 | AgNO_3 | H_2O | O_2 | KNO_3 | Ag Hill formula | HKO | H_2O_2 | AgNO_3 | H_2O | O_2 | KNO_3 | Ag name | potassium hydroxide | hydrogen peroxide | silver nitrate | water | oxygen | potassium nitrate | silver IUPAC name | potassium hydroxide | hydrogen peroxide | silver nitrate | water | molecular oxygen | potassium nitrate | silver

Substance properties

 | potassium hydroxide | hydrogen peroxide | silver nitrate | water | oxygen | potassium nitrate | silver molar mass | 56.105 g/mol | 34.014 g/mol | 169.87 g/mol | 18.015 g/mol | 31.998 g/mol | 101.1 g/mol | 107.8682 g/mol phase | solid (at STP) | liquid (at STP) | solid (at STP) | liquid (at STP) | gas (at STP) | solid (at STP) | solid (at STP) melting point | 406 °C | -0.43 °C | 212 °C | 0 °C | -218 °C | 334 °C | 960 °C boiling point | 1327 °C | 150.2 °C | | 99.9839 °C | -183 °C | | 2212 °C density | 2.044 g/cm^3 | 1.44 g/cm^3 | | 1 g/cm^3 | 0.001429 g/cm^3 (at 0 °C) | | 10.49 g/cm^3 solubility in water | soluble | miscible | soluble | | | soluble | insoluble surface tension | | 0.0804 N/m | | 0.0728 N/m | 0.01347 N/m | |  dynamic viscosity | 0.001 Pa s (at 550 °C) | 0.001249 Pa s (at 20 °C) | | 8.9×10^-4 Pa s (at 25 °C) | 2.055×10^-5 Pa s (at 25 °C) | |  odor | | | odorless | odorless | odorless | odorless |
| potassium hydroxide | hydrogen peroxide | silver nitrate | water | oxygen | potassium nitrate | silver molar mass | 56.105 g/mol | 34.014 g/mol | 169.87 g/mol | 18.015 g/mol | 31.998 g/mol | 101.1 g/mol | 107.8682 g/mol phase | solid (at STP) | liquid (at STP) | solid (at STP) | liquid (at STP) | gas (at STP) | solid (at STP) | solid (at STP) melting point | 406 °C | -0.43 °C | 212 °C | 0 °C | -218 °C | 334 °C | 960 °C boiling point | 1327 °C | 150.2 °C | | 99.9839 °C | -183 °C | | 2212 °C density | 2.044 g/cm^3 | 1.44 g/cm^3 | | 1 g/cm^3 | 0.001429 g/cm^3 (at 0 °C) | | 10.49 g/cm^3 solubility in water | soluble | miscible | soluble | | | soluble | insoluble surface tension | | 0.0804 N/m | | 0.0728 N/m | 0.01347 N/m | | dynamic viscosity | 0.001 Pa s (at 550 °C) | 0.001249 Pa s (at 20 °C) | | 8.9×10^-4 Pa s (at 25 °C) | 2.055×10^-5 Pa s (at 25 °C) | | odor | | | odorless | odorless | odorless | odorless |

Units