Search

FeCl3 + Na2CO3 = NaCl + Fe2(CO3)3

Input interpretation

FeCl_3 iron(III) chloride + Na_2CO_3 soda ash ⟶ NaCl sodium chloride + Fe2(CO3)3
FeCl_3 iron(III) chloride + Na_2CO_3 soda ash ⟶ NaCl sodium chloride + Fe2(CO3)3

Balanced equation

Balance the chemical equation algebraically: FeCl_3 + Na_2CO_3 ⟶ NaCl + Fe2(CO3)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeCl_3 + c_2 Na_2CO_3 ⟶ c_3 NaCl + c_4 Fe2(CO3)3 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Fe, C, Na and O: Cl: | 3 c_1 = c_3 Fe: | c_1 = 2 c_4 C: | c_2 = 3 c_4 Na: | 2 c_2 = c_3 O: | 3 c_2 = 9 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 3 c_3 = 6 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 2 FeCl_3 + 3 Na_2CO_3 ⟶ 6 NaCl + Fe2(CO3)3
Balance the chemical equation algebraically: FeCl_3 + Na_2CO_3 ⟶ NaCl + Fe2(CO3)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeCl_3 + c_2 Na_2CO_3 ⟶ c_3 NaCl + c_4 Fe2(CO3)3 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Fe, C, Na and O: Cl: | 3 c_1 = c_3 Fe: | c_1 = 2 c_4 C: | c_2 = 3 c_4 Na: | 2 c_2 = c_3 O: | 3 c_2 = 9 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 3 c_3 = 6 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 FeCl_3 + 3 Na_2CO_3 ⟶ 6 NaCl + Fe2(CO3)3

Structures

 + ⟶ + Fe2(CO3)3
+ ⟶ + Fe2(CO3)3

Names

iron(III) chloride + soda ash ⟶ sodium chloride + Fe2(CO3)3
iron(III) chloride + soda ash ⟶ sodium chloride + Fe2(CO3)3

Equilibrium constant

Construct the equilibrium constant, K, expression for: FeCl_3 + Na_2CO_3 ⟶ NaCl + Fe2(CO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 FeCl_3 + 3 Na_2CO_3 ⟶ 6 NaCl + Fe2(CO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_3 | 2 | -2 Na_2CO_3 | 3 | -3 NaCl | 6 | 6 Fe2(CO3)3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeCl_3 | 2 | -2 | ([FeCl3])^(-2) Na_2CO_3 | 3 | -3 | ([Na2CO3])^(-3) NaCl | 6 | 6 | ([NaCl])^6 Fe2(CO3)3 | 1 | 1 | [Fe2(CO3)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([FeCl3])^(-2) ([Na2CO3])^(-3) ([NaCl])^6 [Fe2(CO3)3] = (([NaCl])^6 [Fe2(CO3)3])/(([FeCl3])^2 ([Na2CO3])^3)
Construct the equilibrium constant, K, expression for: FeCl_3 + Na_2CO_3 ⟶ NaCl + Fe2(CO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 FeCl_3 + 3 Na_2CO_3 ⟶ 6 NaCl + Fe2(CO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_3 | 2 | -2 Na_2CO_3 | 3 | -3 NaCl | 6 | 6 Fe2(CO3)3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeCl_3 | 2 | -2 | ([FeCl3])^(-2) Na_2CO_3 | 3 | -3 | ([Na2CO3])^(-3) NaCl | 6 | 6 | ([NaCl])^6 Fe2(CO3)3 | 1 | 1 | [Fe2(CO3)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([FeCl3])^(-2) ([Na2CO3])^(-3) ([NaCl])^6 [Fe2(CO3)3] = (([NaCl])^6 [Fe2(CO3)3])/(([FeCl3])^2 ([Na2CO3])^3)

Rate of reaction

Construct the rate of reaction expression for: FeCl_3 + Na_2CO_3 ⟶ NaCl + Fe2(CO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 FeCl_3 + 3 Na_2CO_3 ⟶ 6 NaCl + Fe2(CO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_3 | 2 | -2 Na_2CO_3 | 3 | -3 NaCl | 6 | 6 Fe2(CO3)3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeCl_3 | 2 | -2 | -1/2 (Δ[FeCl3])/(Δt) Na_2CO_3 | 3 | -3 | -1/3 (Δ[Na2CO3])/(Δt) NaCl | 6 | 6 | 1/6 (Δ[NaCl])/(Δt) Fe2(CO3)3 | 1 | 1 | (Δ[Fe2(CO3)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/2 (Δ[FeCl3])/(Δt) = -1/3 (Δ[Na2CO3])/(Δt) = 1/6 (Δ[NaCl])/(Δt) = (Δ[Fe2(CO3)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: FeCl_3 + Na_2CO_3 ⟶ NaCl + Fe2(CO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 FeCl_3 + 3 Na_2CO_3 ⟶ 6 NaCl + Fe2(CO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_3 | 2 | -2 Na_2CO_3 | 3 | -3 NaCl | 6 | 6 Fe2(CO3)3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeCl_3 | 2 | -2 | -1/2 (Δ[FeCl3])/(Δt) Na_2CO_3 | 3 | -3 | -1/3 (Δ[Na2CO3])/(Δt) NaCl | 6 | 6 | 1/6 (Δ[NaCl])/(Δt) Fe2(CO3)3 | 1 | 1 | (Δ[Fe2(CO3)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[FeCl3])/(Δt) = -1/3 (Δ[Na2CO3])/(Δt) = 1/6 (Δ[NaCl])/(Δt) = (Δ[Fe2(CO3)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | iron(III) chloride | soda ash | sodium chloride | Fe2(CO3)3 formula | FeCl_3 | Na_2CO_3 | NaCl | Fe2(CO3)3 Hill formula | Cl_3Fe | CNa_2O_3 | ClNa | C3Fe2O9 name | iron(III) chloride | soda ash | sodium chloride |  IUPAC name | trichloroiron | disodium carbonate | sodium chloride |
| iron(III) chloride | soda ash | sodium chloride | Fe2(CO3)3 formula | FeCl_3 | Na_2CO_3 | NaCl | Fe2(CO3)3 Hill formula | Cl_3Fe | CNa_2O_3 | ClNa | C3Fe2O9 name | iron(III) chloride | soda ash | sodium chloride | IUPAC name | trichloroiron | disodium carbonate | sodium chloride |

Substance properties

 | iron(III) chloride | soda ash | sodium chloride | Fe2(CO3)3 molar mass | 162.2 g/mol | 105.99 g/mol | 58.44 g/mol | 291.71 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) |  melting point | 304 °C | 851 °C | 801 °C |  boiling point | | 1600 °C | 1413 °C |  density | | | 2.16 g/cm^3 |  solubility in water | | soluble | soluble |  dynamic viscosity | | 0.00355 Pa s (at 900 °C) | |  odor | | | odorless |
| iron(III) chloride | soda ash | sodium chloride | Fe2(CO3)3 molar mass | 162.2 g/mol | 105.99 g/mol | 58.44 g/mol | 291.71 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | melting point | 304 °C | 851 °C | 801 °C | boiling point | | 1600 °C | 1413 °C | density | | | 2.16 g/cm^3 | solubility in water | | soluble | soluble | dynamic viscosity | | 0.00355 Pa s (at 900 °C) | | odor | | | odorless |

Units