Search

HNO3 + Cu3AsO3 = H2O + NO + Cu(NO3)2 + H3AsO4

Input interpretation

HNO_3 nitric acid + Cu3AsO3 ⟶ H_2O water + NO nitric oxide + Cu(NO_3)_2 copper(II) nitrate + H_3AsO_4 arsenic acid, solid
HNO_3 nitric acid + Cu3AsO3 ⟶ H_2O water + NO nitric oxide + Cu(NO_3)_2 copper(II) nitrate + H_3AsO_4 arsenic acid, solid

Balanced equation

Balance the chemical equation algebraically: HNO_3 + Cu3AsO3 ⟶ H_2O + NO + Cu(NO_3)_2 + H_3AsO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 Cu3AsO3 ⟶ c_3 H_2O + c_4 NO + c_5 Cu(NO_3)_2 + c_6 H_3AsO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Cu and As: H: | c_1 = 2 c_3 + 3 c_6 N: | c_1 = c_4 + 2 c_5 O: | 3 c_1 + 3 c_2 = c_3 + c_4 + 6 c_5 + 4 c_6 Cu: | 3 c_2 = c_5 As: | c_2 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 23/3 c_2 = 1 c_3 = 7/3 c_4 = 5/3 c_5 = 3 c_6 = 1 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 23 c_2 = 3 c_3 = 7 c_4 = 5 c_5 = 9 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 23 HNO_3 + 3 Cu3AsO3 ⟶ 7 H_2O + 5 NO + 9 Cu(NO_3)_2 + 3 H_3AsO_4
Balance the chemical equation algebraically: HNO_3 + Cu3AsO3 ⟶ H_2O + NO + Cu(NO_3)_2 + H_3AsO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 Cu3AsO3 ⟶ c_3 H_2O + c_4 NO + c_5 Cu(NO_3)_2 + c_6 H_3AsO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Cu and As: H: | c_1 = 2 c_3 + 3 c_6 N: | c_1 = c_4 + 2 c_5 O: | 3 c_1 + 3 c_2 = c_3 + c_4 + 6 c_5 + 4 c_6 Cu: | 3 c_2 = c_5 As: | c_2 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 23/3 c_2 = 1 c_3 = 7/3 c_4 = 5/3 c_5 = 3 c_6 = 1 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 23 c_2 = 3 c_3 = 7 c_4 = 5 c_5 = 9 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 23 HNO_3 + 3 Cu3AsO3 ⟶ 7 H_2O + 5 NO + 9 Cu(NO_3)_2 + 3 H_3AsO_4

Structures

 + Cu3AsO3 ⟶ + + +
+ Cu3AsO3 ⟶ + + +

Names

nitric acid + Cu3AsO3 ⟶ water + nitric oxide + copper(II) nitrate + arsenic acid, solid
nitric acid + Cu3AsO3 ⟶ water + nitric oxide + copper(II) nitrate + arsenic acid, solid

Equilibrium constant

Construct the equilibrium constant, K, expression for: HNO_3 + Cu3AsO3 ⟶ H_2O + NO + Cu(NO_3)_2 + H_3AsO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 23 HNO_3 + 3 Cu3AsO3 ⟶ 7 H_2O + 5 NO + 9 Cu(NO_3)_2 + 3 H_3AsO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 23 | -23 Cu3AsO3 | 3 | -3 H_2O | 7 | 7 NO | 5 | 5 Cu(NO_3)_2 | 9 | 9 H_3AsO_4 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 23 | -23 | ([HNO3])^(-23) Cu3AsO3 | 3 | -3 | ([Cu3AsO3])^(-3) H_2O | 7 | 7 | ([H2O])^7 NO | 5 | 5 | ([NO])^5 Cu(NO_3)_2 | 9 | 9 | ([Cu(NO3)2])^9 H_3AsO_4 | 3 | 3 | ([H3AsO4])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HNO3])^(-23) ([Cu3AsO3])^(-3) ([H2O])^7 ([NO])^5 ([Cu(NO3)2])^9 ([H3AsO4])^3 = (([H2O])^7 ([NO])^5 ([Cu(NO3)2])^9 ([H3AsO4])^3)/(([HNO3])^23 ([Cu3AsO3])^3)
Construct the equilibrium constant, K, expression for: HNO_3 + Cu3AsO3 ⟶ H_2O + NO + Cu(NO_3)_2 + H_3AsO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 23 HNO_3 + 3 Cu3AsO3 ⟶ 7 H_2O + 5 NO + 9 Cu(NO_3)_2 + 3 H_3AsO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 23 | -23 Cu3AsO3 | 3 | -3 H_2O | 7 | 7 NO | 5 | 5 Cu(NO_3)_2 | 9 | 9 H_3AsO_4 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 23 | -23 | ([HNO3])^(-23) Cu3AsO3 | 3 | -3 | ([Cu3AsO3])^(-3) H_2O | 7 | 7 | ([H2O])^7 NO | 5 | 5 | ([NO])^5 Cu(NO_3)_2 | 9 | 9 | ([Cu(NO3)2])^9 H_3AsO_4 | 3 | 3 | ([H3AsO4])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HNO3])^(-23) ([Cu3AsO3])^(-3) ([H2O])^7 ([NO])^5 ([Cu(NO3)2])^9 ([H3AsO4])^3 = (([H2O])^7 ([NO])^5 ([Cu(NO3)2])^9 ([H3AsO4])^3)/(([HNO3])^23 ([Cu3AsO3])^3)

Rate of reaction

Construct the rate of reaction expression for: HNO_3 + Cu3AsO3 ⟶ H_2O + NO + Cu(NO_3)_2 + H_3AsO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 23 HNO_3 + 3 Cu3AsO3 ⟶ 7 H_2O + 5 NO + 9 Cu(NO_3)_2 + 3 H_3AsO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 23 | -23 Cu3AsO3 | 3 | -3 H_2O | 7 | 7 NO | 5 | 5 Cu(NO_3)_2 | 9 | 9 H_3AsO_4 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 23 | -23 | -1/23 (Δ[HNO3])/(Δt) Cu3AsO3 | 3 | -3 | -1/3 (Δ[Cu3AsO3])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) NO | 5 | 5 | 1/5 (Δ[NO])/(Δt) Cu(NO_3)_2 | 9 | 9 | 1/9 (Δ[Cu(NO3)2])/(Δt) H_3AsO_4 | 3 | 3 | 1/3 (Δ[H3AsO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/23 (Δ[HNO3])/(Δt) = -1/3 (Δ[Cu3AsO3])/(Δt) = 1/7 (Δ[H2O])/(Δt) = 1/5 (Δ[NO])/(Δt) = 1/9 (Δ[Cu(NO3)2])/(Δt) = 1/3 (Δ[H3AsO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HNO_3 + Cu3AsO3 ⟶ H_2O + NO + Cu(NO_3)_2 + H_3AsO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 23 HNO_3 + 3 Cu3AsO3 ⟶ 7 H_2O + 5 NO + 9 Cu(NO_3)_2 + 3 H_3AsO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 23 | -23 Cu3AsO3 | 3 | -3 H_2O | 7 | 7 NO | 5 | 5 Cu(NO_3)_2 | 9 | 9 H_3AsO_4 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 23 | -23 | -1/23 (Δ[HNO3])/(Δt) Cu3AsO3 | 3 | -3 | -1/3 (Δ[Cu3AsO3])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) NO | 5 | 5 | 1/5 (Δ[NO])/(Δt) Cu(NO_3)_2 | 9 | 9 | 1/9 (Δ[Cu(NO3)2])/(Δt) H_3AsO_4 | 3 | 3 | 1/3 (Δ[H3AsO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/23 (Δ[HNO3])/(Δt) = -1/3 (Δ[Cu3AsO3])/(Δt) = 1/7 (Δ[H2O])/(Δt) = 1/5 (Δ[NO])/(Δt) = 1/9 (Δ[Cu(NO3)2])/(Δt) = 1/3 (Δ[H3AsO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | nitric acid | Cu3AsO3 | water | nitric oxide | copper(II) nitrate | arsenic acid, solid formula | HNO_3 | Cu3AsO3 | H_2O | NO | Cu(NO_3)_2 | H_3AsO_4 Hill formula | HNO_3 | AsCu3O3 | H_2O | NO | CuN_2O_6 | AsH_3O_4 name | nitric acid | | water | nitric oxide | copper(II) nitrate | arsenic acid, solid IUPAC name | nitric acid | | water | nitric oxide | copper(II) nitrate | arsoric acid
| nitric acid | Cu3AsO3 | water | nitric oxide | copper(II) nitrate | arsenic acid, solid formula | HNO_3 | Cu3AsO3 | H_2O | NO | Cu(NO_3)_2 | H_3AsO_4 Hill formula | HNO_3 | AsCu3O3 | H_2O | NO | CuN_2O_6 | AsH_3O_4 name | nitric acid | | water | nitric oxide | copper(II) nitrate | arsenic acid, solid IUPAC name | nitric acid | | water | nitric oxide | copper(II) nitrate | arsoric acid

Substance properties

 | nitric acid | Cu3AsO3 | water | nitric oxide | copper(II) nitrate | arsenic acid, solid molar mass | 63.012 g/mol | 313.56 g/mol | 18.015 g/mol | 30.006 g/mol | 187.55 g/mol | 141.94 g/mol phase | liquid (at STP) | | liquid (at STP) | gas (at STP) | | solid (at STP) melting point | -41.6 °C | | 0 °C | -163.6 °C | | 35.5 °C boiling point | 83 °C | | 99.9839 °C | -151.7 °C | | 160 °C density | 1.5129 g/cm^3 | | 1 g/cm^3 | 0.001226 g/cm^3 (at 25 °C) | | 2.2 g/cm^3 solubility in water | miscible | | | | |  surface tension | | | 0.0728 N/m | | |  dynamic viscosity | 7.6×10^-4 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | 1.911×10^-5 Pa s (at 25 °C) | |  odor | | | odorless | | |
| nitric acid | Cu3AsO3 | water | nitric oxide | copper(II) nitrate | arsenic acid, solid molar mass | 63.012 g/mol | 313.56 g/mol | 18.015 g/mol | 30.006 g/mol | 187.55 g/mol | 141.94 g/mol phase | liquid (at STP) | | liquid (at STP) | gas (at STP) | | solid (at STP) melting point | -41.6 °C | | 0 °C | -163.6 °C | | 35.5 °C boiling point | 83 °C | | 99.9839 °C | -151.7 °C | | 160 °C density | 1.5129 g/cm^3 | | 1 g/cm^3 | 0.001226 g/cm^3 (at 25 °C) | | 2.2 g/cm^3 solubility in water | miscible | | | | | surface tension | | | 0.0728 N/m | | | dynamic viscosity | 7.6×10^-4 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | 1.911×10^-5 Pa s (at 25 °C) | | odor | | | odorless | | |

Units