Search

KNO3 + Zn(NCS)2 = CO2 + SO2 + N2 + ZnO + K2CO3

Input interpretation

KNO_3 potassium nitrate + Zn(NCS)2 ⟶ CO_2 carbon dioxide + SO_2 sulfur dioxide + N_2 nitrogen + ZnO zinc oxide + K_2CO_3 pearl ash
KNO_3 potassium nitrate + Zn(NCS)2 ⟶ CO_2 carbon dioxide + SO_2 sulfur dioxide + N_2 nitrogen + ZnO zinc oxide + K_2CO_3 pearl ash

Balanced equation

Balance the chemical equation algebraically: KNO_3 + Zn(NCS)2 ⟶ CO_2 + SO_2 + N_2 + ZnO + K_2CO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KNO_3 + c_2 Zn(NCS)2 ⟶ c_3 CO_2 + c_4 SO_2 + c_5 N_2 + c_6 ZnO + c_7 K_2CO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for K, N, O, Zn, C and S: K: | c_1 = 2 c_7 N: | c_1 + 2 c_2 = 2 c_5 O: | 3 c_1 = 2 c_3 + 2 c_4 + c_6 + 3 c_7 Zn: | c_2 = c_6 C: | 2 c_2 = c_3 + c_7 S: | 2 c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 18 c_2 = 5 c_3 = 1 c_4 = 10 c_5 = 14 c_6 = 5 c_7 = 9 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 18 KNO_3 + 5 Zn(NCS)2 ⟶ CO_2 + 10 SO_2 + 14 N_2 + 5 ZnO + 9 K_2CO_3
Balance the chemical equation algebraically: KNO_3 + Zn(NCS)2 ⟶ CO_2 + SO_2 + N_2 + ZnO + K_2CO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KNO_3 + c_2 Zn(NCS)2 ⟶ c_3 CO_2 + c_4 SO_2 + c_5 N_2 + c_6 ZnO + c_7 K_2CO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for K, N, O, Zn, C and S: K: | c_1 = 2 c_7 N: | c_1 + 2 c_2 = 2 c_5 O: | 3 c_1 = 2 c_3 + 2 c_4 + c_6 + 3 c_7 Zn: | c_2 = c_6 C: | 2 c_2 = c_3 + c_7 S: | 2 c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 18 c_2 = 5 c_3 = 1 c_4 = 10 c_5 = 14 c_6 = 5 c_7 = 9 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 18 KNO_3 + 5 Zn(NCS)2 ⟶ CO_2 + 10 SO_2 + 14 N_2 + 5 ZnO + 9 K_2CO_3

Structures

 + Zn(NCS)2 ⟶ + + + +
+ Zn(NCS)2 ⟶ + + + +

Names

potassium nitrate + Zn(NCS)2 ⟶ carbon dioxide + sulfur dioxide + nitrogen + zinc oxide + pearl ash
potassium nitrate + Zn(NCS)2 ⟶ carbon dioxide + sulfur dioxide + nitrogen + zinc oxide + pearl ash

Equilibrium constant

Construct the equilibrium constant, K, expression for: KNO_3 + Zn(NCS)2 ⟶ CO_2 + SO_2 + N_2 + ZnO + K_2CO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 18 KNO_3 + 5 Zn(NCS)2 ⟶ CO_2 + 10 SO_2 + 14 N_2 + 5 ZnO + 9 K_2CO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KNO_3 | 18 | -18 Zn(NCS)2 | 5 | -5 CO_2 | 1 | 1 SO_2 | 10 | 10 N_2 | 14 | 14 ZnO | 5 | 5 K_2CO_3 | 9 | 9 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KNO_3 | 18 | -18 | ([KNO3])^(-18) Zn(NCS)2 | 5 | -5 | ([Zn(NCS)2])^(-5) CO_2 | 1 | 1 | [CO2] SO_2 | 10 | 10 | ([SO2])^10 N_2 | 14 | 14 | ([N2])^14 ZnO | 5 | 5 | ([ZnO])^5 K_2CO_3 | 9 | 9 | ([K2CO3])^9 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([KNO3])^(-18) ([Zn(NCS)2])^(-5) [CO2] ([SO2])^10 ([N2])^14 ([ZnO])^5 ([K2CO3])^9 = ([CO2] ([SO2])^10 ([N2])^14 ([ZnO])^5 ([K2CO3])^9)/(([KNO3])^18 ([Zn(NCS)2])^5)
Construct the equilibrium constant, K, expression for: KNO_3 + Zn(NCS)2 ⟶ CO_2 + SO_2 + N_2 + ZnO + K_2CO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 18 KNO_3 + 5 Zn(NCS)2 ⟶ CO_2 + 10 SO_2 + 14 N_2 + 5 ZnO + 9 K_2CO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KNO_3 | 18 | -18 Zn(NCS)2 | 5 | -5 CO_2 | 1 | 1 SO_2 | 10 | 10 N_2 | 14 | 14 ZnO | 5 | 5 K_2CO_3 | 9 | 9 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KNO_3 | 18 | -18 | ([KNO3])^(-18) Zn(NCS)2 | 5 | -5 | ([Zn(NCS)2])^(-5) CO_2 | 1 | 1 | [CO2] SO_2 | 10 | 10 | ([SO2])^10 N_2 | 14 | 14 | ([N2])^14 ZnO | 5 | 5 | ([ZnO])^5 K_2CO_3 | 9 | 9 | ([K2CO3])^9 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([KNO3])^(-18) ([Zn(NCS)2])^(-5) [CO2] ([SO2])^10 ([N2])^14 ([ZnO])^5 ([K2CO3])^9 = ([CO2] ([SO2])^10 ([N2])^14 ([ZnO])^5 ([K2CO3])^9)/(([KNO3])^18 ([Zn(NCS)2])^5)

Rate of reaction

Construct the rate of reaction expression for: KNO_3 + Zn(NCS)2 ⟶ CO_2 + SO_2 + N_2 + ZnO + K_2CO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 18 KNO_3 + 5 Zn(NCS)2 ⟶ CO_2 + 10 SO_2 + 14 N_2 + 5 ZnO + 9 K_2CO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KNO_3 | 18 | -18 Zn(NCS)2 | 5 | -5 CO_2 | 1 | 1 SO_2 | 10 | 10 N_2 | 14 | 14 ZnO | 5 | 5 K_2CO_3 | 9 | 9 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KNO_3 | 18 | -18 | -1/18 (Δ[KNO3])/(Δt) Zn(NCS)2 | 5 | -5 | -1/5 (Δ[Zn(NCS)2])/(Δt) CO_2 | 1 | 1 | (Δ[CO2])/(Δt) SO_2 | 10 | 10 | 1/10 (Δ[SO2])/(Δt) N_2 | 14 | 14 | 1/14 (Δ[N2])/(Δt) ZnO | 5 | 5 | 1/5 (Δ[ZnO])/(Δt) K_2CO_3 | 9 | 9 | 1/9 (Δ[K2CO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/18 (Δ[KNO3])/(Δt) = -1/5 (Δ[Zn(NCS)2])/(Δt) = (Δ[CO2])/(Δt) = 1/10 (Δ[SO2])/(Δt) = 1/14 (Δ[N2])/(Δt) = 1/5 (Δ[ZnO])/(Δt) = 1/9 (Δ[K2CO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: KNO_3 + Zn(NCS)2 ⟶ CO_2 + SO_2 + N_2 + ZnO + K_2CO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 18 KNO_3 + 5 Zn(NCS)2 ⟶ CO_2 + 10 SO_2 + 14 N_2 + 5 ZnO + 9 K_2CO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KNO_3 | 18 | -18 Zn(NCS)2 | 5 | -5 CO_2 | 1 | 1 SO_2 | 10 | 10 N_2 | 14 | 14 ZnO | 5 | 5 K_2CO_3 | 9 | 9 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KNO_3 | 18 | -18 | -1/18 (Δ[KNO3])/(Δt) Zn(NCS)2 | 5 | -5 | -1/5 (Δ[Zn(NCS)2])/(Δt) CO_2 | 1 | 1 | (Δ[CO2])/(Δt) SO_2 | 10 | 10 | 1/10 (Δ[SO2])/(Δt) N_2 | 14 | 14 | 1/14 (Δ[N2])/(Δt) ZnO | 5 | 5 | 1/5 (Δ[ZnO])/(Δt) K_2CO_3 | 9 | 9 | 1/9 (Δ[K2CO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/18 (Δ[KNO3])/(Δt) = -1/5 (Δ[Zn(NCS)2])/(Δt) = (Δ[CO2])/(Δt) = 1/10 (Δ[SO2])/(Δt) = 1/14 (Δ[N2])/(Δt) = 1/5 (Δ[ZnO])/(Δt) = 1/9 (Δ[K2CO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | potassium nitrate | Zn(NCS)2 | carbon dioxide | sulfur dioxide | nitrogen | zinc oxide | pearl ash formula | KNO_3 | Zn(NCS)2 | CO_2 | SO_2 | N_2 | ZnO | K_2CO_3 Hill formula | KNO_3 | C2N2S2Zn | CO_2 | O_2S | N_2 | OZn | CK_2O_3 name | potassium nitrate | | carbon dioxide | sulfur dioxide | nitrogen | zinc oxide | pearl ash IUPAC name | potassium nitrate | | carbon dioxide | sulfur dioxide | molecular nitrogen | oxozinc | dipotassium carbonate
| potassium nitrate | Zn(NCS)2 | carbon dioxide | sulfur dioxide | nitrogen | zinc oxide | pearl ash formula | KNO_3 | Zn(NCS)2 | CO_2 | SO_2 | N_2 | ZnO | K_2CO_3 Hill formula | KNO_3 | C2N2S2Zn | CO_2 | O_2S | N_2 | OZn | CK_2O_3 name | potassium nitrate | | carbon dioxide | sulfur dioxide | nitrogen | zinc oxide | pearl ash IUPAC name | potassium nitrate | | carbon dioxide | sulfur dioxide | molecular nitrogen | oxozinc | dipotassium carbonate