Search

Cl2 + Na2SO4 + FeSO4 = NaCl + Fe2(SO4)3

Input interpretation

Cl_2 chlorine + Na_2SO_4 sodium sulfate + FeSO_4 duretter ⟶ NaCl sodium chloride + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate
Cl_2 chlorine + Na_2SO_4 sodium sulfate + FeSO_4 duretter ⟶ NaCl sodium chloride + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate

Balanced equation

Balance the chemical equation algebraically: Cl_2 + Na_2SO_4 + FeSO_4 ⟶ NaCl + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Cl_2 + c_2 Na_2SO_4 + c_3 FeSO_4 ⟶ c_4 NaCl + c_5 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Na, O, S and Fe: Cl: | 2 c_1 = c_4 Na: | 2 c_2 = c_4 O: | 4 c_2 + 4 c_3 = 12 c_5 S: | c_2 + c_3 = 3 c_5 Fe: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 2 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | Cl_2 + Na_2SO_4 + 2 FeSO_4 ⟶ 2 NaCl + Fe_2(SO_4)_3·xH_2O
Balance the chemical equation algebraically: Cl_2 + Na_2SO_4 + FeSO_4 ⟶ NaCl + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Cl_2 + c_2 Na_2SO_4 + c_3 FeSO_4 ⟶ c_4 NaCl + c_5 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Na, O, S and Fe: Cl: | 2 c_1 = c_4 Na: | 2 c_2 = c_4 O: | 4 c_2 + 4 c_3 = 12 c_5 S: | c_2 + c_3 = 3 c_5 Fe: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 2 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | Cl_2 + Na_2SO_4 + 2 FeSO_4 ⟶ 2 NaCl + Fe_2(SO_4)_3·xH_2O

Structures

 + + ⟶ +
+ + ⟶ +

Names

chlorine + sodium sulfate + duretter ⟶ sodium chloride + iron(III) sulfate hydrate
chlorine + sodium sulfate + duretter ⟶ sodium chloride + iron(III) sulfate hydrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: Cl_2 + Na_2SO_4 + FeSO_4 ⟶ NaCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Cl_2 + Na_2SO_4 + 2 FeSO_4 ⟶ 2 NaCl + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 1 | -1 Na_2SO_4 | 1 | -1 FeSO_4 | 2 | -2 NaCl | 2 | 2 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Cl_2 | 1 | -1 | ([Cl2])^(-1) Na_2SO_4 | 1 | -1 | ([Na2SO4])^(-1) FeSO_4 | 2 | -2 | ([FeSO4])^(-2) NaCl | 2 | 2 | ([NaCl])^2 Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Cl2])^(-1) ([Na2SO4])^(-1) ([FeSO4])^(-2) ([NaCl])^2 [Fe2(SO4)3·xH2O] = (([NaCl])^2 [Fe2(SO4)3·xH2O])/([Cl2] [Na2SO4] ([FeSO4])^2)
Construct the equilibrium constant, K, expression for: Cl_2 + Na_2SO_4 + FeSO_4 ⟶ NaCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Cl_2 + Na_2SO_4 + 2 FeSO_4 ⟶ 2 NaCl + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 1 | -1 Na_2SO_4 | 1 | -1 FeSO_4 | 2 | -2 NaCl | 2 | 2 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Cl_2 | 1 | -1 | ([Cl2])^(-1) Na_2SO_4 | 1 | -1 | ([Na2SO4])^(-1) FeSO_4 | 2 | -2 | ([FeSO4])^(-2) NaCl | 2 | 2 | ([NaCl])^2 Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Cl2])^(-1) ([Na2SO4])^(-1) ([FeSO4])^(-2) ([NaCl])^2 [Fe2(SO4)3·xH2O] = (([NaCl])^2 [Fe2(SO4)3·xH2O])/([Cl2] [Na2SO4] ([FeSO4])^2)

Rate of reaction

Construct the rate of reaction expression for: Cl_2 + Na_2SO_4 + FeSO_4 ⟶ NaCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Cl_2 + Na_2SO_4 + 2 FeSO_4 ⟶ 2 NaCl + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 1 | -1 Na_2SO_4 | 1 | -1 FeSO_4 | 2 | -2 NaCl | 2 | 2 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Cl_2 | 1 | -1 | -(Δ[Cl2])/(Δt) Na_2SO_4 | 1 | -1 | -(Δ[Na2SO4])/(Δt) FeSO_4 | 2 | -2 | -1/2 (Δ[FeSO4])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[Cl2])/(Δt) = -(Δ[Na2SO4])/(Δt) = -1/2 (Δ[FeSO4])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Cl_2 + Na_2SO_4 + FeSO_4 ⟶ NaCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Cl_2 + Na_2SO_4 + 2 FeSO_4 ⟶ 2 NaCl + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 1 | -1 Na_2SO_4 | 1 | -1 FeSO_4 | 2 | -2 NaCl | 2 | 2 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Cl_2 | 1 | -1 | -(Δ[Cl2])/(Δt) Na_2SO_4 | 1 | -1 | -(Δ[Na2SO4])/(Δt) FeSO_4 | 2 | -2 | -1/2 (Δ[FeSO4])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[Cl2])/(Δt) = -(Δ[Na2SO4])/(Δt) = -1/2 (Δ[FeSO4])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | chlorine | sodium sulfate | duretter | sodium chloride | iron(III) sulfate hydrate formula | Cl_2 | Na_2SO_4 | FeSO_4 | NaCl | Fe_2(SO_4)_3·xH_2O Hill formula | Cl_2 | Na_2O_4S | FeO_4S | ClNa | Fe_2O_12S_3 name | chlorine | sodium sulfate | duretter | sodium chloride | iron(III) sulfate hydrate IUPAC name | molecular chlorine | disodium sulfate | iron(+2) cation sulfate | sodium chloride | diferric trisulfate
| chlorine | sodium sulfate | duretter | sodium chloride | iron(III) sulfate hydrate formula | Cl_2 | Na_2SO_4 | FeSO_4 | NaCl | Fe_2(SO_4)_3·xH_2O Hill formula | Cl_2 | Na_2O_4S | FeO_4S | ClNa | Fe_2O_12S_3 name | chlorine | sodium sulfate | duretter | sodium chloride | iron(III) sulfate hydrate IUPAC name | molecular chlorine | disodium sulfate | iron(+2) cation sulfate | sodium chloride | diferric trisulfate

Substance properties

 | chlorine | sodium sulfate | duretter | sodium chloride | iron(III) sulfate hydrate molar mass | 70.9 g/mol | 142.04 g/mol | 151.9 g/mol | 58.44 g/mol | 399.9 g/mol phase | gas (at STP) | solid (at STP) | | solid (at STP) |  melting point | -101 °C | 884 °C | | 801 °C |  boiling point | -34 °C | 1429 °C | | 1413 °C |  density | 0.003214 g/cm^3 (at 0 °C) | 2.68 g/cm^3 | 2.841 g/cm^3 | 2.16 g/cm^3 |  solubility in water | | soluble | | soluble | slightly soluble odor | | | | odorless |
| chlorine | sodium sulfate | duretter | sodium chloride | iron(III) sulfate hydrate molar mass | 70.9 g/mol | 142.04 g/mol | 151.9 g/mol | 58.44 g/mol | 399.9 g/mol phase | gas (at STP) | solid (at STP) | | solid (at STP) | melting point | -101 °C | 884 °C | | 801 °C | boiling point | -34 °C | 1429 °C | | 1413 °C | density | 0.003214 g/cm^3 (at 0 °C) | 2.68 g/cm^3 | 2.841 g/cm^3 | 2.16 g/cm^3 | solubility in water | | soluble | | soluble | slightly soluble odor | | | | odorless |

Units