Input interpretation
H_2O water + KMnO_4 potassium permanganate + SO_2 sulfur dioxide ⟶ H_2SO_4 sulfuric acid + K_2SO_4 potassium sulfate + MnO_2 manganese dioxide
Balanced equation
Balance the chemical equation algebraically: H_2O + KMnO_4 + SO_2 ⟶ H_2SO_4 + K_2SO_4 + MnO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 KMnO_4 + c_3 SO_2 ⟶ c_4 H_2SO_4 + c_5 K_2SO_4 + c_6 MnO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, K, Mn and S: H: | 2 c_1 = 2 c_4 O: | c_1 + 4 c_2 + 2 c_3 = 4 c_4 + 4 c_5 + 2 c_6 K: | c_2 = 2 c_5 Mn: | c_2 = c_6 S: | c_3 = c_4 + c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 2 c_3 = 3 c_4 = 2 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 H_2O + 2 KMnO_4 + 3 SO_2 ⟶ 2 H_2SO_4 + K_2SO_4 + 2 MnO_2
Structures
+ + ⟶ + +
Names
water + potassium permanganate + sulfur dioxide ⟶ sulfuric acid + potassium sulfate + manganese dioxide
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2O + KMnO_4 + SO_2 ⟶ H_2SO_4 + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 H_2O + 2 KMnO_4 + 3 SO_2 ⟶ 2 H_2SO_4 + K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 2 | -2 KMnO_4 | 2 | -2 SO_2 | 3 | -3 H_2SO_4 | 2 | 2 K_2SO_4 | 1 | 1 MnO_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 2 | -2 | ([H2O])^(-2) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) SO_2 | 3 | -3 | ([SO2])^(-3) H_2SO_4 | 2 | 2 | ([H2SO4])^2 K_2SO_4 | 1 | 1 | [K2SO4] MnO_2 | 2 | 2 | ([MnO2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-2) ([KMnO4])^(-2) ([SO2])^(-3) ([H2SO4])^2 [K2SO4] ([MnO2])^2 = (([H2SO4])^2 [K2SO4] ([MnO2])^2)/(([H2O])^2 ([KMnO4])^2 ([SO2])^3)
Rate of reaction
Construct the rate of reaction expression for: H_2O + KMnO_4 + SO_2 ⟶ H_2SO_4 + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 H_2O + 2 KMnO_4 + 3 SO_2 ⟶ 2 H_2SO_4 + K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 2 | -2 KMnO_4 | 2 | -2 SO_2 | 3 | -3 H_2SO_4 | 2 | 2 K_2SO_4 | 1 | 1 MnO_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 2 | -2 | -1/2 (Δ[H2O])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) SO_2 | 3 | -3 | -1/3 (Δ[SO2])/(Δt) H_2SO_4 | 2 | 2 | 1/2 (Δ[H2SO4])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnO_2 | 2 | 2 | 1/2 (Δ[MnO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[H2O])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/3 (Δ[SO2])/(Δt) = 1/2 (Δ[H2SO4])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| water | potassium permanganate | sulfur dioxide | sulfuric acid | potassium sulfate | manganese dioxide formula | H_2O | KMnO_4 | SO_2 | H_2SO_4 | K_2SO_4 | MnO_2 Hill formula | H_2O | KMnO_4 | O_2S | H_2O_4S | K_2O_4S | MnO_2 name | water | potassium permanganate | sulfur dioxide | sulfuric acid | potassium sulfate | manganese dioxide IUPAC name | water | potassium permanganate | sulfur dioxide | sulfuric acid | dipotassium sulfate | dioxomanganese