Search

H2SO4 + K2Cr2O7 + FeSO4 = H2O + Fe2(SO4)3 + KHSO4 + Cr2SO4

Input interpretation

H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + FeSO_4 duretter ⟶ H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + KHSO_4 potassium bisulfate + Cr2SO4
H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + FeSO_4 duretter ⟶ H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + KHSO_4 potassium bisulfate + Cr2SO4

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KHSO_4 + Cr2SO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 FeSO_4 ⟶ c_4 H_2O + c_5 Fe_2(SO_4)_3·xH_2O + c_6 KHSO_4 + c_7 Cr2SO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and Fe: H: | 2 c_1 = 2 c_4 + c_6 O: | 4 c_1 + 7 c_2 + 4 c_3 = c_4 + 12 c_5 + 4 c_6 + 4 c_7 S: | c_1 + c_3 = 3 c_5 + c_6 + c_7 Cr: | 2 c_2 = 2 c_7 K: | 2 c_2 = c_6 Fe: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 8 c_2 = 1 c_3 = 10 c_4 = 7 c_5 = 5 c_6 = 2 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 8 H_2SO_4 + K_2Cr_2O_7 + 10 FeSO_4 ⟶ 7 H_2O + 5 Fe_2(SO_4)_3·xH_2O + 2 KHSO_4 + Cr2SO4
Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KHSO_4 + Cr2SO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 FeSO_4 ⟶ c_4 H_2O + c_5 Fe_2(SO_4)_3·xH_2O + c_6 KHSO_4 + c_7 Cr2SO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and Fe: H: | 2 c_1 = 2 c_4 + c_6 O: | 4 c_1 + 7 c_2 + 4 c_3 = c_4 + 12 c_5 + 4 c_6 + 4 c_7 S: | c_1 + c_3 = 3 c_5 + c_6 + c_7 Cr: | 2 c_2 = 2 c_7 K: | 2 c_2 = c_6 Fe: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 8 c_2 = 1 c_3 = 10 c_4 = 7 c_5 = 5 c_6 = 2 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 8 H_2SO_4 + K_2Cr_2O_7 + 10 FeSO_4 ⟶ 7 H_2O + 5 Fe_2(SO_4)_3·xH_2O + 2 KHSO_4 + Cr2SO4

Structures

 + + ⟶ + + + Cr2SO4
+ + ⟶ + + + Cr2SO4

Names

sulfuric acid + potassium dichromate + duretter ⟶ water + iron(III) sulfate hydrate + potassium bisulfate + Cr2SO4
sulfuric acid + potassium dichromate + duretter ⟶ water + iron(III) sulfate hydrate + potassium bisulfate + Cr2SO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KHSO_4 + Cr2SO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 8 H_2SO_4 + K_2Cr_2O_7 + 10 FeSO_4 ⟶ 7 H_2O + 5 Fe_2(SO_4)_3·xH_2O + 2 KHSO_4 + Cr2SO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 K_2Cr_2O_7 | 1 | -1 FeSO_4 | 10 | -10 H_2O | 7 | 7 Fe_2(SO_4)_3·xH_2O | 5 | 5 KHSO_4 | 2 | 2 Cr2SO4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 8 | -8 | ([H2SO4])^(-8) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) FeSO_4 | 10 | -10 | ([FeSO4])^(-10) H_2O | 7 | 7 | ([H2O])^7 Fe_2(SO_4)_3·xH_2O | 5 | 5 | ([Fe2(SO4)3·xH2O])^5 KHSO_4 | 2 | 2 | ([KHSO4])^2 Cr2SO4 | 1 | 1 | [Cr2SO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-8) ([K2Cr2O7])^(-1) ([FeSO4])^(-10) ([H2O])^7 ([Fe2(SO4)3·xH2O])^5 ([KHSO4])^2 [Cr2SO4] = (([H2O])^7 ([Fe2(SO4)3·xH2O])^5 ([KHSO4])^2 [Cr2SO4])/(([H2SO4])^8 [K2Cr2O7] ([FeSO4])^10)
Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KHSO_4 + Cr2SO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 8 H_2SO_4 + K_2Cr_2O_7 + 10 FeSO_4 ⟶ 7 H_2O + 5 Fe_2(SO_4)_3·xH_2O + 2 KHSO_4 + Cr2SO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 K_2Cr_2O_7 | 1 | -1 FeSO_4 | 10 | -10 H_2O | 7 | 7 Fe_2(SO_4)_3·xH_2O | 5 | 5 KHSO_4 | 2 | 2 Cr2SO4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 8 | -8 | ([H2SO4])^(-8) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) FeSO_4 | 10 | -10 | ([FeSO4])^(-10) H_2O | 7 | 7 | ([H2O])^7 Fe_2(SO_4)_3·xH_2O | 5 | 5 | ([Fe2(SO4)3·xH2O])^5 KHSO_4 | 2 | 2 | ([KHSO4])^2 Cr2SO4 | 1 | 1 | [Cr2SO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-8) ([K2Cr2O7])^(-1) ([FeSO4])^(-10) ([H2O])^7 ([Fe2(SO4)3·xH2O])^5 ([KHSO4])^2 [Cr2SO4] = (([H2O])^7 ([Fe2(SO4)3·xH2O])^5 ([KHSO4])^2 [Cr2SO4])/(([H2SO4])^8 [K2Cr2O7] ([FeSO4])^10)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KHSO_4 + Cr2SO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 8 H_2SO_4 + K_2Cr_2O_7 + 10 FeSO_4 ⟶ 7 H_2O + 5 Fe_2(SO_4)_3·xH_2O + 2 KHSO_4 + Cr2SO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 K_2Cr_2O_7 | 1 | -1 FeSO_4 | 10 | -10 H_2O | 7 | 7 Fe_2(SO_4)_3·xH_2O | 5 | 5 KHSO_4 | 2 | 2 Cr2SO4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 8 | -8 | -1/8 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) FeSO_4 | 10 | -10 | -1/10 (Δ[FeSO4])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) Fe_2(SO_4)_3·xH_2O | 5 | 5 | 1/5 (Δ[Fe2(SO4)3·xH2O])/(Δt) KHSO_4 | 2 | 2 | 1/2 (Δ[KHSO4])/(Δt) Cr2SO4 | 1 | 1 | (Δ[Cr2SO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/8 (Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/10 (Δ[FeSO4])/(Δt) = 1/7 (Δ[H2O])/(Δt) = 1/5 (Δ[Fe2(SO4)3·xH2O])/(Δt) = 1/2 (Δ[KHSO4])/(Δt) = (Δ[Cr2SO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KHSO_4 + Cr2SO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 8 H_2SO_4 + K_2Cr_2O_7 + 10 FeSO_4 ⟶ 7 H_2O + 5 Fe_2(SO_4)_3·xH_2O + 2 KHSO_4 + Cr2SO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 K_2Cr_2O_7 | 1 | -1 FeSO_4 | 10 | -10 H_2O | 7 | 7 Fe_2(SO_4)_3·xH_2O | 5 | 5 KHSO_4 | 2 | 2 Cr2SO4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 8 | -8 | -1/8 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) FeSO_4 | 10 | -10 | -1/10 (Δ[FeSO4])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) Fe_2(SO_4)_3·xH_2O | 5 | 5 | 1/5 (Δ[Fe2(SO4)3·xH2O])/(Δt) KHSO_4 | 2 | 2 | 1/2 (Δ[KHSO4])/(Δt) Cr2SO4 | 1 | 1 | (Δ[Cr2SO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/8 (Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/10 (Δ[FeSO4])/(Δt) = 1/7 (Δ[H2O])/(Δt) = 1/5 (Δ[Fe2(SO4)3·xH2O])/(Δt) = 1/2 (Δ[KHSO4])/(Δt) = (Δ[Cr2SO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium dichromate | duretter | water | iron(III) sulfate hydrate | potassium bisulfate | Cr2SO4 formula | H_2SO_4 | K_2Cr_2O_7 | FeSO_4 | H_2O | Fe_2(SO_4)_3·xH_2O | KHSO_4 | Cr2SO4 Hill formula | H_2O_4S | Cr_2K_2O_7 | FeO_4S | H_2O | Fe_2O_12S_3 | HKO_4S | Cr2O4S name | sulfuric acid | potassium dichromate | duretter | water | iron(III) sulfate hydrate | potassium bisulfate |  IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | iron(+2) cation sulfate | water | diferric trisulfate | potassium hydrogen sulfate |
| sulfuric acid | potassium dichromate | duretter | water | iron(III) sulfate hydrate | potassium bisulfate | Cr2SO4 formula | H_2SO_4 | K_2Cr_2O_7 | FeSO_4 | H_2O | Fe_2(SO_4)_3·xH_2O | KHSO_4 | Cr2SO4 Hill formula | H_2O_4S | Cr_2K_2O_7 | FeO_4S | H_2O | Fe_2O_12S_3 | HKO_4S | Cr2O4S name | sulfuric acid | potassium dichromate | duretter | water | iron(III) sulfate hydrate | potassium bisulfate | IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | iron(+2) cation sulfate | water | diferric trisulfate | potassium hydrogen sulfate |

Substance properties

 | sulfuric acid | potassium dichromate | duretter | water | iron(III) sulfate hydrate | potassium bisulfate | Cr2SO4 molar mass | 98.07 g/mol | 294.18 g/mol | 151.9 g/mol | 18.015 g/mol | 399.9 g/mol | 136.16 g/mol | 200.05 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | solid (at STP) |  melting point | 10.371 °C | 398 °C | | 0 °C | | 214 °C |  boiling point | 279.6 °C | | | 99.9839 °C | | |  density | 1.8305 g/cm^3 | 2.67 g/cm^3 | 2.841 g/cm^3 | 1 g/cm^3 | | 2.32 g/cm^3 |  solubility in water | very soluble | | | | slightly soluble | |  surface tension | 0.0735 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | odorless | odorless | | odorless | | |
| sulfuric acid | potassium dichromate | duretter | water | iron(III) sulfate hydrate | potassium bisulfate | Cr2SO4 molar mass | 98.07 g/mol | 294.18 g/mol | 151.9 g/mol | 18.015 g/mol | 399.9 g/mol | 136.16 g/mol | 200.05 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | solid (at STP) | melting point | 10.371 °C | 398 °C | | 0 °C | | 214 °C | boiling point | 279.6 °C | | | 99.9839 °C | | | density | 1.8305 g/cm^3 | 2.67 g/cm^3 | 2.841 g/cm^3 | 1 g/cm^3 | | 2.32 g/cm^3 | solubility in water | very soluble | | | | slightly soluble | | surface tension | 0.0735 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | odorless | odorless | | odorless | | |

Units