Search

H2O + H2SO4 + K2Cr2O7 + Na2SO3 = NaOH + K2SO4 + Cr2(SO4)3

Input interpretation

H_2O water + H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + Na_2SO_3 sodium sulfite ⟶ NaOH sodium hydroxide + K_2SO_4 potassium sulfate + Cr_2(SO_4)_3 chromium sulfate
H_2O water + H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + Na_2SO_3 sodium sulfite ⟶ NaOH sodium hydroxide + K_2SO_4 potassium sulfate + Cr_2(SO_4)_3 chromium sulfate

Balanced equation

Balance the chemical equation algebraically: H_2O + H_2SO_4 + K_2Cr_2O_7 + Na_2SO_3 ⟶ NaOH + K_2SO_4 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 H_2SO_4 + c_3 K_2Cr_2O_7 + c_4 Na_2SO_3 ⟶ c_5 NaOH + c_6 K_2SO_4 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and Na: H: | 2 c_1 + 2 c_2 = c_5 O: | c_1 + 4 c_2 + 7 c_3 + 3 c_4 = c_5 + 4 c_6 + 12 c_7 S: | c_2 + c_4 = c_6 + 3 c_7 Cr: | 2 c_3 = 2 c_7 K: | 2 c_3 = 2 c_6 Na: | 2 c_4 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 1 c_4 = 3 c_5 = 6 c_6 = 1 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 2 H_2O + H_2SO_4 + K_2Cr_2O_7 + 3 Na_2SO_3 ⟶ 6 NaOH + K_2SO_4 + Cr_2(SO_4)_3
Balance the chemical equation algebraically: H_2O + H_2SO_4 + K_2Cr_2O_7 + Na_2SO_3 ⟶ NaOH + K_2SO_4 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 H_2SO_4 + c_3 K_2Cr_2O_7 + c_4 Na_2SO_3 ⟶ c_5 NaOH + c_6 K_2SO_4 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and Na: H: | 2 c_1 + 2 c_2 = c_5 O: | c_1 + 4 c_2 + 7 c_3 + 3 c_4 = c_5 + 4 c_6 + 12 c_7 S: | c_2 + c_4 = c_6 + 3 c_7 Cr: | 2 c_3 = 2 c_7 K: | 2 c_3 = 2 c_6 Na: | 2 c_4 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 1 c_4 = 3 c_5 = 6 c_6 = 1 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 H_2O + H_2SO_4 + K_2Cr_2O_7 + 3 Na_2SO_3 ⟶ 6 NaOH + K_2SO_4 + Cr_2(SO_4)_3

Structures

 + + + ⟶ + +
+ + + ⟶ + +

Names

water + sulfuric acid + potassium dichromate + sodium sulfite ⟶ sodium hydroxide + potassium sulfate + chromium sulfate
water + sulfuric acid + potassium dichromate + sodium sulfite ⟶ sodium hydroxide + potassium sulfate + chromium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + H_2SO_4 + K_2Cr_2O_7 + Na_2SO_3 ⟶ NaOH + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 H_2O + H_2SO_4 + K_2Cr_2O_7 + 3 Na_2SO_3 ⟶ 6 NaOH + K_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 2 | -2 H_2SO_4 | 1 | -1 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 3 | -3 NaOH | 6 | 6 K_2SO_4 | 1 | 1 Cr_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 2 | -2 | ([H2O])^(-2) H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) Na_2SO_3 | 3 | -3 | ([Na2SO3])^(-3) NaOH | 6 | 6 | ([NaOH])^6 K_2SO_4 | 1 | 1 | [K2SO4] Cr_2(SO_4)_3 | 1 | 1 | [Cr2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-2) ([H2SO4])^(-1) ([K2Cr2O7])^(-1) ([Na2SO3])^(-3) ([NaOH])^6 [K2SO4] [Cr2(SO4)3] = (([NaOH])^6 [K2SO4] [Cr2(SO4)3])/(([H2O])^2 [H2SO4] [K2Cr2O7] ([Na2SO3])^3)
Construct the equilibrium constant, K, expression for: H_2O + H_2SO_4 + K_2Cr_2O_7 + Na_2SO_3 ⟶ NaOH + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 H_2O + H_2SO_4 + K_2Cr_2O_7 + 3 Na_2SO_3 ⟶ 6 NaOH + K_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 2 | -2 H_2SO_4 | 1 | -1 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 3 | -3 NaOH | 6 | 6 K_2SO_4 | 1 | 1 Cr_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 2 | -2 | ([H2O])^(-2) H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) Na_2SO_3 | 3 | -3 | ([Na2SO3])^(-3) NaOH | 6 | 6 | ([NaOH])^6 K_2SO_4 | 1 | 1 | [K2SO4] Cr_2(SO_4)_3 | 1 | 1 | [Cr2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-2) ([H2SO4])^(-1) ([K2Cr2O7])^(-1) ([Na2SO3])^(-3) ([NaOH])^6 [K2SO4] [Cr2(SO4)3] = (([NaOH])^6 [K2SO4] [Cr2(SO4)3])/(([H2O])^2 [H2SO4] [K2Cr2O7] ([Na2SO3])^3)

Rate of reaction

Construct the rate of reaction expression for: H_2O + H_2SO_4 + K_2Cr_2O_7 + Na_2SO_3 ⟶ NaOH + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 H_2O + H_2SO_4 + K_2Cr_2O_7 + 3 Na_2SO_3 ⟶ 6 NaOH + K_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 2 | -2 H_2SO_4 | 1 | -1 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 3 | -3 NaOH | 6 | 6 K_2SO_4 | 1 | 1 Cr_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 2 | -2 | -1/2 (Δ[H2O])/(Δt) H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) Na_2SO_3 | 3 | -3 | -1/3 (Δ[Na2SO3])/(Δt) NaOH | 6 | 6 | 1/6 (Δ[NaOH])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) Cr_2(SO_4)_3 | 1 | 1 | (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/2 (Δ[H2O])/(Δt) = -(Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/3 (Δ[Na2SO3])/(Δt) = 1/6 (Δ[NaOH])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + H_2SO_4 + K_2Cr_2O_7 + Na_2SO_3 ⟶ NaOH + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 H_2O + H_2SO_4 + K_2Cr_2O_7 + 3 Na_2SO_3 ⟶ 6 NaOH + K_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 2 | -2 H_2SO_4 | 1 | -1 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 3 | -3 NaOH | 6 | 6 K_2SO_4 | 1 | 1 Cr_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 2 | -2 | -1/2 (Δ[H2O])/(Δt) H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) Na_2SO_3 | 3 | -3 | -1/3 (Δ[Na2SO3])/(Δt) NaOH | 6 | 6 | 1/6 (Δ[NaOH])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) Cr_2(SO_4)_3 | 1 | 1 | (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[H2O])/(Δt) = -(Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/3 (Δ[Na2SO3])/(Δt) = 1/6 (Δ[NaOH])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | sulfuric acid | potassium dichromate | sodium sulfite | sodium hydroxide | potassium sulfate | chromium sulfate formula | H_2O | H_2SO_4 | K_2Cr_2O_7 | Na_2SO_3 | NaOH | K_2SO_4 | Cr_2(SO_4)_3 Hill formula | H_2O | H_2O_4S | Cr_2K_2O_7 | Na_2O_3S | HNaO | K_2O_4S | Cr_2O_12S_3 name | water | sulfuric acid | potassium dichromate | sodium sulfite | sodium hydroxide | potassium sulfate | chromium sulfate IUPAC name | water | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | disodium sulfite | sodium hydroxide | dipotassium sulfate | chromium(+3) cation trisulfate
| water | sulfuric acid | potassium dichromate | sodium sulfite | sodium hydroxide | potassium sulfate | chromium sulfate formula | H_2O | H_2SO_4 | K_2Cr_2O_7 | Na_2SO_3 | NaOH | K_2SO_4 | Cr_2(SO_4)_3 Hill formula | H_2O | H_2O_4S | Cr_2K_2O_7 | Na_2O_3S | HNaO | K_2O_4S | Cr_2O_12S_3 name | water | sulfuric acid | potassium dichromate | sodium sulfite | sodium hydroxide | potassium sulfate | chromium sulfate IUPAC name | water | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | disodium sulfite | sodium hydroxide | dipotassium sulfate | chromium(+3) cation trisulfate

Substance properties

 | water | sulfuric acid | potassium dichromate | sodium sulfite | sodium hydroxide | potassium sulfate | chromium sulfate molar mass | 18.015 g/mol | 98.07 g/mol | 294.18 g/mol | 126.04 g/mol | 39.997 g/mol | 174.25 g/mol | 392.2 g/mol phase | liquid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) | | liquid (at STP) melting point | 0 °C | 10.371 °C | 398 °C | 500 °C | 323 °C | |  boiling point | 99.9839 °C | 279.6 °C | | | 1390 °C | | 330 °C density | 1 g/cm^3 | 1.8305 g/cm^3 | 2.67 g/cm^3 | 2.63 g/cm^3 | 2.13 g/cm^3 | | 1.84 g/cm^3 solubility in water | | very soluble | | | soluble | soluble |  surface tension | 0.0728 N/m | 0.0735 N/m | | | 0.07435 N/m | |  dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | 0.021 Pa s (at 25 °C) | | | 0.004 Pa s (at 350 °C) | |  odor | odorless | odorless | odorless | | | | odorless
| water | sulfuric acid | potassium dichromate | sodium sulfite | sodium hydroxide | potassium sulfate | chromium sulfate molar mass | 18.015 g/mol | 98.07 g/mol | 294.18 g/mol | 126.04 g/mol | 39.997 g/mol | 174.25 g/mol | 392.2 g/mol phase | liquid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) | | liquid (at STP) melting point | 0 °C | 10.371 °C | 398 °C | 500 °C | 323 °C | | boiling point | 99.9839 °C | 279.6 °C | | | 1390 °C | | 330 °C density | 1 g/cm^3 | 1.8305 g/cm^3 | 2.67 g/cm^3 | 2.63 g/cm^3 | 2.13 g/cm^3 | | 1.84 g/cm^3 solubility in water | | very soluble | | | soluble | soluble | surface tension | 0.0728 N/m | 0.0735 N/m | | | 0.07435 N/m | | dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | 0.021 Pa s (at 25 °C) | | | 0.004 Pa s (at 350 °C) | | odor | odorless | odorless | odorless | | | | odorless

Units