Search

K2Cr2O7 + HI + HClO4 = H2O + I2 + KClO4 + Cr(ClO4)3

Input interpretation

K_2Cr_2O_7 (potassium dichromate) + HI (hydrogen iodide) + HClO_4 (perchloric acid) ⟶ H_2O (water) + I_2 (iodine) + KClO_4 (potassium perchlorate) + Cr(ClO_4)_3 (chromium(III) perchlorate)
K_2Cr_2O_7 (potassium dichromate) + HI (hydrogen iodide) + HClO_4 (perchloric acid) ⟶ H_2O (water) + I_2 (iodine) + KClO_4 (potassium perchlorate) + Cr(ClO_4)_3 (chromium(III) perchlorate)

Balanced equation

Balance the chemical equation algebraically: K_2Cr_2O_7 + HI + HClO_4 ⟶ H_2O + I_2 + KClO_4 + Cr(ClO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 K_2Cr_2O_7 + c_2 HI + c_3 HClO_4 ⟶ c_4 H_2O + c_5 I_2 + c_6 KClO_4 + c_7 Cr(ClO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Cr, K, O, H, I and Cl: Cr: | 2 c_1 = c_7 K: | 2 c_1 = c_6 O: | 7 c_1 + 4 c_3 = c_4 + 4 c_6 + 12 c_7 H: | c_2 + c_3 = 2 c_4 I: | c_2 = 2 c_5 Cl: | c_3 = c_6 + 3 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 6 c_3 = 8 c_4 = 7 c_5 = 3 c_6 = 2 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | K_2Cr_2O_7 + 6 HI + 8 HClO_4 ⟶ 7 H_2O + 3 I_2 + 2 KClO_4 + 2 Cr(ClO_4)_3
Balance the chemical equation algebraically: K_2Cr_2O_7 + HI + HClO_4 ⟶ H_2O + I_2 + KClO_4 + Cr(ClO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 K_2Cr_2O_7 + c_2 HI + c_3 HClO_4 ⟶ c_4 H_2O + c_5 I_2 + c_6 KClO_4 + c_7 Cr(ClO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Cr, K, O, H, I and Cl: Cr: | 2 c_1 = c_7 K: | 2 c_1 = c_6 O: | 7 c_1 + 4 c_3 = c_4 + 4 c_6 + 12 c_7 H: | c_2 + c_3 = 2 c_4 I: | c_2 = 2 c_5 Cl: | c_3 = c_6 + 3 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 6 c_3 = 8 c_4 = 7 c_5 = 3 c_6 = 2 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | K_2Cr_2O_7 + 6 HI + 8 HClO_4 ⟶ 7 H_2O + 3 I_2 + 2 KClO_4 + 2 Cr(ClO_4)_3

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

potassium dichromate + hydrogen iodide + perchloric acid ⟶ water + iodine + potassium perchlorate + chromium(III) perchlorate
potassium dichromate + hydrogen iodide + perchloric acid ⟶ water + iodine + potassium perchlorate + chromium(III) perchlorate

Equilibrium constant

Construct the equilibrium constant, K, expression for: K_2Cr_2O_7 + HI + HClO_4 ⟶ H_2O + I_2 + KClO_4 + Cr(ClO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: K_2Cr_2O_7 + 6 HI + 8 HClO_4 ⟶ 7 H_2O + 3 I_2 + 2 KClO_4 + 2 Cr(ClO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i K_2Cr_2O_7 | 1 | -1 HI | 6 | -6 HClO_4 | 8 | -8 H_2O | 7 | 7 I_2 | 3 | 3 KClO_4 | 2 | 2 Cr(ClO_4)_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) HI | 6 | -6 | ([HI])^(-6) HClO_4 | 8 | -8 | ([HClO4])^(-8) H_2O | 7 | 7 | ([H2O])^7 I_2 | 3 | 3 | ([I2])^3 KClO_4 | 2 | 2 | ([KClO4])^2 Cr(ClO_4)_3 | 2 | 2 | ([Cr(ClO4)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([K2Cr2O7])^(-1) ([HI])^(-6) ([HClO4])^(-8) ([H2O])^7 ([I2])^3 ([KClO4])^2 ([Cr(ClO4)3])^2 = (([H2O])^7 ([I2])^3 ([KClO4])^2 ([Cr(ClO4)3])^2)/([K2Cr2O7] ([HI])^6 ([HClO4])^8)
Construct the equilibrium constant, K, expression for: K_2Cr_2O_7 + HI + HClO_4 ⟶ H_2O + I_2 + KClO_4 + Cr(ClO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: K_2Cr_2O_7 + 6 HI + 8 HClO_4 ⟶ 7 H_2O + 3 I_2 + 2 KClO_4 + 2 Cr(ClO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i K_2Cr_2O_7 | 1 | -1 HI | 6 | -6 HClO_4 | 8 | -8 H_2O | 7 | 7 I_2 | 3 | 3 KClO_4 | 2 | 2 Cr(ClO_4)_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) HI | 6 | -6 | ([HI])^(-6) HClO_4 | 8 | -8 | ([HClO4])^(-8) H_2O | 7 | 7 | ([H2O])^7 I_2 | 3 | 3 | ([I2])^3 KClO_4 | 2 | 2 | ([KClO4])^2 Cr(ClO_4)_3 | 2 | 2 | ([Cr(ClO4)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([K2Cr2O7])^(-1) ([HI])^(-6) ([HClO4])^(-8) ([H2O])^7 ([I2])^3 ([KClO4])^2 ([Cr(ClO4)3])^2 = (([H2O])^7 ([I2])^3 ([KClO4])^2 ([Cr(ClO4)3])^2)/([K2Cr2O7] ([HI])^6 ([HClO4])^8)

Rate of reaction

Construct the rate of reaction expression for: K_2Cr_2O_7 + HI + HClO_4 ⟶ H_2O + I_2 + KClO_4 + Cr(ClO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: K_2Cr_2O_7 + 6 HI + 8 HClO_4 ⟶ 7 H_2O + 3 I_2 + 2 KClO_4 + 2 Cr(ClO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i K_2Cr_2O_7 | 1 | -1 HI | 6 | -6 HClO_4 | 8 | -8 H_2O | 7 | 7 I_2 | 3 | 3 KClO_4 | 2 | 2 Cr(ClO_4)_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) HI | 6 | -6 | -1/6 (Δ[HI])/(Δt) HClO_4 | 8 | -8 | -1/8 (Δ[HClO4])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) I_2 | 3 | 3 | 1/3 (Δ[I2])/(Δt) KClO_4 | 2 | 2 | 1/2 (Δ[KClO4])/(Δt) Cr(ClO_4)_3 | 2 | 2 | 1/2 (Δ[Cr(ClO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[K2Cr2O7])/(Δt) = -1/6 (Δ[HI])/(Δt) = -1/8 (Δ[HClO4])/(Δt) = 1/7 (Δ[H2O])/(Δt) = 1/3 (Δ[I2])/(Δt) = 1/2 (Δ[KClO4])/(Δt) = 1/2 (Δ[Cr(ClO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: K_2Cr_2O_7 + HI + HClO_4 ⟶ H_2O + I_2 + KClO_4 + Cr(ClO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: K_2Cr_2O_7 + 6 HI + 8 HClO_4 ⟶ 7 H_2O + 3 I_2 + 2 KClO_4 + 2 Cr(ClO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i K_2Cr_2O_7 | 1 | -1 HI | 6 | -6 HClO_4 | 8 | -8 H_2O | 7 | 7 I_2 | 3 | 3 KClO_4 | 2 | 2 Cr(ClO_4)_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) HI | 6 | -6 | -1/6 (Δ[HI])/(Δt) HClO_4 | 8 | -8 | -1/8 (Δ[HClO4])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) I_2 | 3 | 3 | 1/3 (Δ[I2])/(Δt) KClO_4 | 2 | 2 | 1/2 (Δ[KClO4])/(Δt) Cr(ClO_4)_3 | 2 | 2 | 1/2 (Δ[Cr(ClO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[K2Cr2O7])/(Δt) = -1/6 (Δ[HI])/(Δt) = -1/8 (Δ[HClO4])/(Δt) = 1/7 (Δ[H2O])/(Δt) = 1/3 (Δ[I2])/(Δt) = 1/2 (Δ[KClO4])/(Δt) = 1/2 (Δ[Cr(ClO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | potassium dichromate | hydrogen iodide | perchloric acid | water | iodine | potassium perchlorate | chromium(III) perchlorate formula | K_2Cr_2O_7 | HI | HClO_4 | H_2O | I_2 | KClO_4 | Cr(ClO_4)_3 Hill formula | Cr_2K_2O_7 | HI | ClHO_4 | H_2O | I_2 | ClKO_4 | Cl_3CrO_12 name | potassium dichromate | hydrogen iodide | perchloric acid | water | iodine | potassium perchlorate | chromium(III) perchlorate IUPAC name | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | hydrogen iodide | perchloric acid | water | molecular iodine | potassium perchlorate |
| potassium dichromate | hydrogen iodide | perchloric acid | water | iodine | potassium perchlorate | chromium(III) perchlorate formula | K_2Cr_2O_7 | HI | HClO_4 | H_2O | I_2 | KClO_4 | Cr(ClO_4)_3 Hill formula | Cr_2K_2O_7 | HI | ClHO_4 | H_2O | I_2 | ClKO_4 | Cl_3CrO_12 name | potassium dichromate | hydrogen iodide | perchloric acid | water | iodine | potassium perchlorate | chromium(III) perchlorate IUPAC name | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | hydrogen iodide | perchloric acid | water | molecular iodine | potassium perchlorate |