Search

HNO3 + NaNO2 + NaMnO4 = H2O + NaNO3 + Mn(NO3)2

Input interpretation

HNO_3 nitric acid + NaNO_2 sodium nitrite + NaMnO_4 sodium permanganate ⟶ H_2O water + NaNO_3 sodium nitrate + Mn(NO_3)_2 manganese(II) nitrate
HNO_3 nitric acid + NaNO_2 sodium nitrite + NaMnO_4 sodium permanganate ⟶ H_2O water + NaNO_3 sodium nitrate + Mn(NO_3)_2 manganese(II) nitrate

Balanced equation

Balance the chemical equation algebraically: HNO_3 + NaNO_2 + NaMnO_4 ⟶ H_2O + NaNO_3 + Mn(NO_3)_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 NaNO_2 + c_3 NaMnO_4 ⟶ c_4 H_2O + c_5 NaNO_3 + c_6 Mn(NO_3)_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Na and Mn: H: | c_1 = 2 c_4 N: | c_1 + c_2 = c_5 + 2 c_6 O: | 3 c_1 + 2 c_2 + 4 c_3 = c_4 + 3 c_5 + 6 c_6 Na: | c_2 + c_3 = c_5 Mn: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 5/2 c_3 = 1 c_4 = 3/2 c_5 = 7/2 c_6 = 1 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 6 c_2 = 5 c_3 = 2 c_4 = 3 c_5 = 7 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 HNO_3 + 5 NaNO_2 + 2 NaMnO_4 ⟶ 3 H_2O + 7 NaNO_3 + 2 Mn(NO_3)_2
Balance the chemical equation algebraically: HNO_3 + NaNO_2 + NaMnO_4 ⟶ H_2O + NaNO_3 + Mn(NO_3)_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 NaNO_2 + c_3 NaMnO_4 ⟶ c_4 H_2O + c_5 NaNO_3 + c_6 Mn(NO_3)_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Na and Mn: H: | c_1 = 2 c_4 N: | c_1 + c_2 = c_5 + 2 c_6 O: | 3 c_1 + 2 c_2 + 4 c_3 = c_4 + 3 c_5 + 6 c_6 Na: | c_2 + c_3 = c_5 Mn: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 5/2 c_3 = 1 c_4 = 3/2 c_5 = 7/2 c_6 = 1 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 6 c_2 = 5 c_3 = 2 c_4 = 3 c_5 = 7 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 HNO_3 + 5 NaNO_2 + 2 NaMnO_4 ⟶ 3 H_2O + 7 NaNO_3 + 2 Mn(NO_3)_2

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

nitric acid + sodium nitrite + sodium permanganate ⟶ water + sodium nitrate + manganese(II) nitrate
nitric acid + sodium nitrite + sodium permanganate ⟶ water + sodium nitrate + manganese(II) nitrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: HNO_3 + NaNO_2 + NaMnO_4 ⟶ H_2O + NaNO_3 + Mn(NO_3)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 HNO_3 + 5 NaNO_2 + 2 NaMnO_4 ⟶ 3 H_2O + 7 NaNO_3 + 2 Mn(NO_3)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 6 | -6 NaNO_2 | 5 | -5 NaMnO_4 | 2 | -2 H_2O | 3 | 3 NaNO_3 | 7 | 7 Mn(NO_3)_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 6 | -6 | ([HNO3])^(-6) NaNO_2 | 5 | -5 | ([NaNO2])^(-5) NaMnO_4 | 2 | -2 | ([NaMnO4])^(-2) H_2O | 3 | 3 | ([H2O])^3 NaNO_3 | 7 | 7 | ([NaNO3])^7 Mn(NO_3)_2 | 2 | 2 | ([Mn(NO3)2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HNO3])^(-6) ([NaNO2])^(-5) ([NaMnO4])^(-2) ([H2O])^3 ([NaNO3])^7 ([Mn(NO3)2])^2 = (([H2O])^3 ([NaNO3])^7 ([Mn(NO3)2])^2)/(([HNO3])^6 ([NaNO2])^5 ([NaMnO4])^2)
Construct the equilibrium constant, K, expression for: HNO_3 + NaNO_2 + NaMnO_4 ⟶ H_2O + NaNO_3 + Mn(NO_3)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 HNO_3 + 5 NaNO_2 + 2 NaMnO_4 ⟶ 3 H_2O + 7 NaNO_3 + 2 Mn(NO_3)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 6 | -6 NaNO_2 | 5 | -5 NaMnO_4 | 2 | -2 H_2O | 3 | 3 NaNO_3 | 7 | 7 Mn(NO_3)_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 6 | -6 | ([HNO3])^(-6) NaNO_2 | 5 | -5 | ([NaNO2])^(-5) NaMnO_4 | 2 | -2 | ([NaMnO4])^(-2) H_2O | 3 | 3 | ([H2O])^3 NaNO_3 | 7 | 7 | ([NaNO3])^7 Mn(NO_3)_2 | 2 | 2 | ([Mn(NO3)2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HNO3])^(-6) ([NaNO2])^(-5) ([NaMnO4])^(-2) ([H2O])^3 ([NaNO3])^7 ([Mn(NO3)2])^2 = (([H2O])^3 ([NaNO3])^7 ([Mn(NO3)2])^2)/(([HNO3])^6 ([NaNO2])^5 ([NaMnO4])^2)

Rate of reaction

Construct the rate of reaction expression for: HNO_3 + NaNO_2 + NaMnO_4 ⟶ H_2O + NaNO_3 + Mn(NO_3)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 HNO_3 + 5 NaNO_2 + 2 NaMnO_4 ⟶ 3 H_2O + 7 NaNO_3 + 2 Mn(NO_3)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 6 | -6 NaNO_2 | 5 | -5 NaMnO_4 | 2 | -2 H_2O | 3 | 3 NaNO_3 | 7 | 7 Mn(NO_3)_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 6 | -6 | -1/6 (Δ[HNO3])/(Δt) NaNO_2 | 5 | -5 | -1/5 (Δ[NaNO2])/(Δt) NaMnO_4 | 2 | -2 | -1/2 (Δ[NaMnO4])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) NaNO_3 | 7 | 7 | 1/7 (Δ[NaNO3])/(Δt) Mn(NO_3)_2 | 2 | 2 | 1/2 (Δ[Mn(NO3)2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[HNO3])/(Δt) = -1/5 (Δ[NaNO2])/(Δt) = -1/2 (Δ[NaMnO4])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/7 (Δ[NaNO3])/(Δt) = 1/2 (Δ[Mn(NO3)2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HNO_3 + NaNO_2 + NaMnO_4 ⟶ H_2O + NaNO_3 + Mn(NO_3)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 HNO_3 + 5 NaNO_2 + 2 NaMnO_4 ⟶ 3 H_2O + 7 NaNO_3 + 2 Mn(NO_3)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 6 | -6 NaNO_2 | 5 | -5 NaMnO_4 | 2 | -2 H_2O | 3 | 3 NaNO_3 | 7 | 7 Mn(NO_3)_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 6 | -6 | -1/6 (Δ[HNO3])/(Δt) NaNO_2 | 5 | -5 | -1/5 (Δ[NaNO2])/(Δt) NaMnO_4 | 2 | -2 | -1/2 (Δ[NaMnO4])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) NaNO_3 | 7 | 7 | 1/7 (Δ[NaNO3])/(Δt) Mn(NO_3)_2 | 2 | 2 | 1/2 (Δ[Mn(NO3)2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[HNO3])/(Δt) = -1/5 (Δ[NaNO2])/(Δt) = -1/2 (Δ[NaMnO4])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/7 (Δ[NaNO3])/(Δt) = 1/2 (Δ[Mn(NO3)2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(II) nitrate formula | HNO_3 | NaNO_2 | NaMnO_4 | H_2O | NaNO_3 | Mn(NO_3)_2 Hill formula | HNO_3 | NNaO_2 | MnNaO_4 | H_2O | NNaO_3 | MnN_2O_6 name | nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(II) nitrate IUPAC name | nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(2+) dinitrate
| nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(II) nitrate formula | HNO_3 | NaNO_2 | NaMnO_4 | H_2O | NaNO_3 | Mn(NO_3)_2 Hill formula | HNO_3 | NNaO_2 | MnNaO_4 | H_2O | NNaO_3 | MnN_2O_6 name | nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(II) nitrate IUPAC name | nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(2+) dinitrate

Substance properties

 | nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(II) nitrate molar mass | 63.012 g/mol | 68.995 g/mol | 141.92 g/mol | 18.015 g/mol | 84.994 g/mol | 178.95 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | liquid (at STP) | solid (at STP) |  melting point | -41.6 °C | 271 °C | | 0 °C | 306 °C |  boiling point | 83 °C | | 100 °C | 99.9839 °C | |  density | 1.5129 g/cm^3 | 2.168 g/cm^3 | 1.391 g/cm^3 | 1 g/cm^3 | 2.26 g/cm^3 | 1.536 g/cm^3 solubility in water | miscible | | | | soluble |  surface tension | | | | 0.0728 N/m | |  dynamic viscosity | 7.6×10^-4 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | 0.003 Pa s (at 250 °C) |  odor | | | | odorless | |
| nitric acid | sodium nitrite | sodium permanganate | water | sodium nitrate | manganese(II) nitrate molar mass | 63.012 g/mol | 68.995 g/mol | 141.92 g/mol | 18.015 g/mol | 84.994 g/mol | 178.95 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | liquid (at STP) | solid (at STP) | melting point | -41.6 °C | 271 °C | | 0 °C | 306 °C | boiling point | 83 °C | | 100 °C | 99.9839 °C | | density | 1.5129 g/cm^3 | 2.168 g/cm^3 | 1.391 g/cm^3 | 1 g/cm^3 | 2.26 g/cm^3 | 1.536 g/cm^3 solubility in water | miscible | | | | soluble | surface tension | | | | 0.0728 N/m | | dynamic viscosity | 7.6×10^-4 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | 0.003 Pa s (at 250 °C) | odor | | | | odorless | |

Units