Search

H2SO4 + Zn + Na2HAsO4 = H2O + Na2SO4 + ZnSO4 + AsH3

Input interpretation

H_2SO_4 sulfuric acid + Zn zinc + AsHNa_2O_4 disodium hydrogen arsenate ⟶ H_2O water + Na_2SO_4 sodium sulfate + ZnSO_4 zinc sulfate + AsH_3 arsine
H_2SO_4 sulfuric acid + Zn zinc + AsHNa_2O_4 disodium hydrogen arsenate ⟶ H_2O water + Na_2SO_4 sodium sulfate + ZnSO_4 zinc sulfate + AsH_3 arsine

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + Zn + AsHNa_2O_4 ⟶ H_2O + Na_2SO_4 + ZnSO_4 + AsH_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Zn + c_3 AsHNa_2O_4 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 ZnSO_4 + c_7 AsH_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Zn, As and Na: H: | 2 c_1 + c_3 = 2 c_4 + 3 c_7 O: | 4 c_1 + 4 c_3 = c_4 + 4 c_5 + 4 c_6 S: | c_1 = c_5 + c_6 Zn: | c_2 = c_6 As: | c_3 = c_7 Na: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 5 c_2 = 4 c_3 = 1 c_4 = 4 c_5 = 1 c_6 = 4 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 5 H_2SO_4 + 4 Zn + AsHNa_2O_4 ⟶ 4 H_2O + Na_2SO_4 + 4 ZnSO_4 + AsH_3
Balance the chemical equation algebraically: H_2SO_4 + Zn + AsHNa_2O_4 ⟶ H_2O + Na_2SO_4 + ZnSO_4 + AsH_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Zn + c_3 AsHNa_2O_4 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 ZnSO_4 + c_7 AsH_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Zn, As and Na: H: | 2 c_1 + c_3 = 2 c_4 + 3 c_7 O: | 4 c_1 + 4 c_3 = c_4 + 4 c_5 + 4 c_6 S: | c_1 = c_5 + c_6 Zn: | c_2 = c_6 As: | c_3 = c_7 Na: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 5 c_2 = 4 c_3 = 1 c_4 = 4 c_5 = 1 c_6 = 4 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 5 H_2SO_4 + 4 Zn + AsHNa_2O_4 ⟶ 4 H_2O + Na_2SO_4 + 4 ZnSO_4 + AsH_3

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + zinc + disodium hydrogen arsenate ⟶ water + sodium sulfate + zinc sulfate + arsine
sulfuric acid + zinc + disodium hydrogen arsenate ⟶ water + sodium sulfate + zinc sulfate + arsine

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + Zn + AsHNa_2O_4 ⟶ H_2O + Na_2SO_4 + ZnSO_4 + AsH_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 5 H_2SO_4 + 4 Zn + AsHNa_2O_4 ⟶ 4 H_2O + Na_2SO_4 + 4 ZnSO_4 + AsH_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 5 | -5 Zn | 4 | -4 AsHNa_2O_4 | 1 | -1 H_2O | 4 | 4 Na_2SO_4 | 1 | 1 ZnSO_4 | 4 | 4 AsH_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 5 | -5 | ([H2SO4])^(-5) Zn | 4 | -4 | ([Zn])^(-4) AsHNa_2O_4 | 1 | -1 | ([AsHNa2O4])^(-1) H_2O | 4 | 4 | ([H2O])^4 Na_2SO_4 | 1 | 1 | [Na2SO4] ZnSO_4 | 4 | 4 | ([ZnSO4])^4 AsH_3 | 1 | 1 | [AsH3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-5) ([Zn])^(-4) ([AsHNa2O4])^(-1) ([H2O])^4 [Na2SO4] ([ZnSO4])^4 [AsH3] = (([H2O])^4 [Na2SO4] ([ZnSO4])^4 [AsH3])/(([H2SO4])^5 ([Zn])^4 [AsHNa2O4])
Construct the equilibrium constant, K, expression for: H_2SO_4 + Zn + AsHNa_2O_4 ⟶ H_2O + Na_2SO_4 + ZnSO_4 + AsH_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 5 H_2SO_4 + 4 Zn + AsHNa_2O_4 ⟶ 4 H_2O + Na_2SO_4 + 4 ZnSO_4 + AsH_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 5 | -5 Zn | 4 | -4 AsHNa_2O_4 | 1 | -1 H_2O | 4 | 4 Na_2SO_4 | 1 | 1 ZnSO_4 | 4 | 4 AsH_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 5 | -5 | ([H2SO4])^(-5) Zn | 4 | -4 | ([Zn])^(-4) AsHNa_2O_4 | 1 | -1 | ([AsHNa2O4])^(-1) H_2O | 4 | 4 | ([H2O])^4 Na_2SO_4 | 1 | 1 | [Na2SO4] ZnSO_4 | 4 | 4 | ([ZnSO4])^4 AsH_3 | 1 | 1 | [AsH3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-5) ([Zn])^(-4) ([AsHNa2O4])^(-1) ([H2O])^4 [Na2SO4] ([ZnSO4])^4 [AsH3] = (([H2O])^4 [Na2SO4] ([ZnSO4])^4 [AsH3])/(([H2SO4])^5 ([Zn])^4 [AsHNa2O4])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + Zn + AsHNa_2O_4 ⟶ H_2O + Na_2SO_4 + ZnSO_4 + AsH_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 5 H_2SO_4 + 4 Zn + AsHNa_2O_4 ⟶ 4 H_2O + Na_2SO_4 + 4 ZnSO_4 + AsH_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 5 | -5 Zn | 4 | -4 AsHNa_2O_4 | 1 | -1 H_2O | 4 | 4 Na_2SO_4 | 1 | 1 ZnSO_4 | 4 | 4 AsH_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 5 | -5 | -1/5 (Δ[H2SO4])/(Δt) Zn | 4 | -4 | -1/4 (Δ[Zn])/(Δt) AsHNa_2O_4 | 1 | -1 | -(Δ[AsHNa2O4])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) ZnSO_4 | 4 | 4 | 1/4 (Δ[ZnSO4])/(Δt) AsH_3 | 1 | 1 | (Δ[AsH3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/5 (Δ[H2SO4])/(Δt) = -1/4 (Δ[Zn])/(Δt) = -(Δ[AsHNa2O4])/(Δt) = 1/4 (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = 1/4 (Δ[ZnSO4])/(Δt) = (Δ[AsH3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + Zn + AsHNa_2O_4 ⟶ H_2O + Na_2SO_4 + ZnSO_4 + AsH_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 5 H_2SO_4 + 4 Zn + AsHNa_2O_4 ⟶ 4 H_2O + Na_2SO_4 + 4 ZnSO_4 + AsH_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 5 | -5 Zn | 4 | -4 AsHNa_2O_4 | 1 | -1 H_2O | 4 | 4 Na_2SO_4 | 1 | 1 ZnSO_4 | 4 | 4 AsH_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 5 | -5 | -1/5 (Δ[H2SO4])/(Δt) Zn | 4 | -4 | -1/4 (Δ[Zn])/(Δt) AsHNa_2O_4 | 1 | -1 | -(Δ[AsHNa2O4])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) ZnSO_4 | 4 | 4 | 1/4 (Δ[ZnSO4])/(Δt) AsH_3 | 1 | 1 | (Δ[AsH3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/5 (Δ[H2SO4])/(Δt) = -1/4 (Δ[Zn])/(Δt) = -(Δ[AsHNa2O4])/(Δt) = 1/4 (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = 1/4 (Δ[ZnSO4])/(Δt) = (Δ[AsH3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | zinc | disodium hydrogen arsenate | water | sodium sulfate | zinc sulfate | arsine formula | H_2SO_4 | Zn | AsHNa_2O_4 | H_2O | Na_2SO_4 | ZnSO_4 | AsH_3 Hill formula | H_2O_4S | Zn | AsHNa_2O_4 | H_2O | Na_2O_4S | O_4SZn | AsH_3 name | sulfuric acid | zinc | disodium hydrogen arsenate | water | sodium sulfate | zinc sulfate | arsine IUPAC name | sulfuric acid | zinc | disodium dioxidoarsinic acid | water | disodium sulfate | zinc sulfate | arsane
| sulfuric acid | zinc | disodium hydrogen arsenate | water | sodium sulfate | zinc sulfate | arsine formula | H_2SO_4 | Zn | AsHNa_2O_4 | H_2O | Na_2SO_4 | ZnSO_4 | AsH_3 Hill formula | H_2O_4S | Zn | AsHNa_2O_4 | H_2O | Na_2O_4S | O_4SZn | AsH_3 name | sulfuric acid | zinc | disodium hydrogen arsenate | water | sodium sulfate | zinc sulfate | arsine IUPAC name | sulfuric acid | zinc | disodium dioxidoarsinic acid | water | disodium sulfate | zinc sulfate | arsane