Search

H2SO4 + Na2S + Na2CrO7 = H2O + S + Na2SO4 + Cr2(SO4)3

Input interpretation

H_2SO_4 sulfuric acid + Na_2S sodium sulfide + Na2CrO7 ⟶ H_2O water + S mixed sulfur + Na_2SO_4 sodium sulfate + Cr_2(SO_4)_3 chromium sulfate
H_2SO_4 sulfuric acid + Na_2S sodium sulfide + Na2CrO7 ⟶ H_2O water + S mixed sulfur + Na_2SO_4 sodium sulfate + Cr_2(SO_4)_3 chromium sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + Na_2S + Na2CrO7 ⟶ H_2O + S + Na_2SO_4 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Na_2S + c_3 Na2CrO7 ⟶ c_4 H_2O + c_5 S + c_6 Na_2SO_4 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Na and Cr: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_3 = c_4 + 4 c_6 + 12 c_7 S: | c_1 + c_2 = c_5 + c_6 + 3 c_7 Na: | 2 c_2 + 2 c_3 = 2 c_6 Cr: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_2 = (9 c_1)/20 + 3/10 c_3 = (2 c_1)/5 - 2/5 c_4 = c_1 c_5 = 1 c_6 = (17 c_1)/20 - 1/10 c_7 = c_1/5 - 1/5 The resulting system of equations is still underdetermined, so an additional coefficient must be set arbitrarily. Set c_1 = 6 and solve for the remaining coefficients: c_1 = 6 c_2 = 3 c_3 = 2 c_4 = 6 c_5 = 1 c_6 = 5 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 H_2SO_4 + 3 Na_2S + 2 Na2CrO7 ⟶ 6 H_2O + S + 5 Na_2SO_4 + Cr_2(SO_4)_3
Balance the chemical equation algebraically: H_2SO_4 + Na_2S + Na2CrO7 ⟶ H_2O + S + Na_2SO_4 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Na_2S + c_3 Na2CrO7 ⟶ c_4 H_2O + c_5 S + c_6 Na_2SO_4 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Na and Cr: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_3 = c_4 + 4 c_6 + 12 c_7 S: | c_1 + c_2 = c_5 + c_6 + 3 c_7 Na: | 2 c_2 + 2 c_3 = 2 c_6 Cr: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_2 = (9 c_1)/20 + 3/10 c_3 = (2 c_1)/5 - 2/5 c_4 = c_1 c_5 = 1 c_6 = (17 c_1)/20 - 1/10 c_7 = c_1/5 - 1/5 The resulting system of equations is still underdetermined, so an additional coefficient must be set arbitrarily. Set c_1 = 6 and solve for the remaining coefficients: c_1 = 6 c_2 = 3 c_3 = 2 c_4 = 6 c_5 = 1 c_6 = 5 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 H_2SO_4 + 3 Na_2S + 2 Na2CrO7 ⟶ 6 H_2O + S + 5 Na_2SO_4 + Cr_2(SO_4)_3

Structures

 + + Na2CrO7 ⟶ + + +
+ + Na2CrO7 ⟶ + + +

Names

sulfuric acid + sodium sulfide + Na2CrO7 ⟶ water + mixed sulfur + sodium sulfate + chromium sulfate
sulfuric acid + sodium sulfide + Na2CrO7 ⟶ water + mixed sulfur + sodium sulfate + chromium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + Na_2S + Na2CrO7 ⟶ H_2O + S + Na_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 3 Na_2S + 2 Na2CrO7 ⟶ 6 H_2O + S + 5 Na_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Na_2S | 3 | -3 Na2CrO7 | 2 | -2 H_2O | 6 | 6 S | 1 | 1 Na_2SO_4 | 5 | 5 Cr_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) Na_2S | 3 | -3 | ([Na2S])^(-3) Na2CrO7 | 2 | -2 | ([Na2CrO7])^(-2) H_2O | 6 | 6 | ([H2O])^6 S | 1 | 1 | [S] Na_2SO_4 | 5 | 5 | ([Na2SO4])^5 Cr_2(SO_4)_3 | 1 | 1 | [Cr2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-6) ([Na2S])^(-3) ([Na2CrO7])^(-2) ([H2O])^6 [S] ([Na2SO4])^5 [Cr2(SO4)3] = (([H2O])^6 [S] ([Na2SO4])^5 [Cr2(SO4)3])/(([H2SO4])^6 ([Na2S])^3 ([Na2CrO7])^2)
Construct the equilibrium constant, K, expression for: H_2SO_4 + Na_2S + Na2CrO7 ⟶ H_2O + S + Na_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 3 Na_2S + 2 Na2CrO7 ⟶ 6 H_2O + S + 5 Na_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Na_2S | 3 | -3 Na2CrO7 | 2 | -2 H_2O | 6 | 6 S | 1 | 1 Na_2SO_4 | 5 | 5 Cr_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) Na_2S | 3 | -3 | ([Na2S])^(-3) Na2CrO7 | 2 | -2 | ([Na2CrO7])^(-2) H_2O | 6 | 6 | ([H2O])^6 S | 1 | 1 | [S] Na_2SO_4 | 5 | 5 | ([Na2SO4])^5 Cr_2(SO_4)_3 | 1 | 1 | [Cr2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-6) ([Na2S])^(-3) ([Na2CrO7])^(-2) ([H2O])^6 [S] ([Na2SO4])^5 [Cr2(SO4)3] = (([H2O])^6 [S] ([Na2SO4])^5 [Cr2(SO4)3])/(([H2SO4])^6 ([Na2S])^3 ([Na2CrO7])^2)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + Na_2S + Na2CrO7 ⟶ H_2O + S + Na_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 3 Na_2S + 2 Na2CrO7 ⟶ 6 H_2O + S + 5 Na_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Na_2S | 3 | -3 Na2CrO7 | 2 | -2 H_2O | 6 | 6 S | 1 | 1 Na_2SO_4 | 5 | 5 Cr_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) Na_2S | 3 | -3 | -1/3 (Δ[Na2S])/(Δt) Na2CrO7 | 2 | -2 | -1/2 (Δ[Na2CrO7])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) S | 1 | 1 | (Δ[S])/(Δt) Na_2SO_4 | 5 | 5 | 1/5 (Δ[Na2SO4])/(Δt) Cr_2(SO_4)_3 | 1 | 1 | (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/3 (Δ[Na2S])/(Δt) = -1/2 (Δ[Na2CrO7])/(Δt) = 1/6 (Δ[H2O])/(Δt) = (Δ[S])/(Δt) = 1/5 (Δ[Na2SO4])/(Δt) = (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + Na_2S + Na2CrO7 ⟶ H_2O + S + Na_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 3 Na_2S + 2 Na2CrO7 ⟶ 6 H_2O + S + 5 Na_2SO_4 + Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Na_2S | 3 | -3 Na2CrO7 | 2 | -2 H_2O | 6 | 6 S | 1 | 1 Na_2SO_4 | 5 | 5 Cr_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) Na_2S | 3 | -3 | -1/3 (Δ[Na2S])/(Δt) Na2CrO7 | 2 | -2 | -1/2 (Δ[Na2CrO7])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) S | 1 | 1 | (Δ[S])/(Δt) Na_2SO_4 | 5 | 5 | 1/5 (Δ[Na2SO4])/(Δt) Cr_2(SO_4)_3 | 1 | 1 | (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/3 (Δ[Na2S])/(Δt) = -1/2 (Δ[Na2CrO7])/(Δt) = 1/6 (Δ[H2O])/(Δt) = (Δ[S])/(Δt) = 1/5 (Δ[Na2SO4])/(Δt) = (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | sodium sulfide | Na2CrO7 | water | mixed sulfur | sodium sulfate | chromium sulfate formula | H_2SO_4 | Na_2S | Na2CrO7 | H_2O | S | Na_2SO_4 | Cr_2(SO_4)_3 Hill formula | H_2O_4S | Na_2S_1 | CrNa2O7 | H_2O | S | Na_2O_4S | Cr_2O_12S_3 name | sulfuric acid | sodium sulfide | | water | mixed sulfur | sodium sulfate | chromium sulfate IUPAC name | sulfuric acid | | | water | sulfur | disodium sulfate | chromium(+3) cation trisulfate
| sulfuric acid | sodium sulfide | Na2CrO7 | water | mixed sulfur | sodium sulfate | chromium sulfate formula | H_2SO_4 | Na_2S | Na2CrO7 | H_2O | S | Na_2SO_4 | Cr_2(SO_4)_3 Hill formula | H_2O_4S | Na_2S_1 | CrNa2O7 | H_2O | S | Na_2O_4S | Cr_2O_12S_3 name | sulfuric acid | sodium sulfide | | water | mixed sulfur | sodium sulfate | chromium sulfate IUPAC name | sulfuric acid | | | water | sulfur | disodium sulfate | chromium(+3) cation trisulfate

Substance properties

 | sulfuric acid | sodium sulfide | Na2CrO7 | water | mixed sulfur | sodium sulfate | chromium sulfate molar mass | 98.07 g/mol | 78.04 g/mol | 209.97 g/mol | 18.015 g/mol | 32.06 g/mol | 142.04 g/mol | 392.2 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) melting point | 10.371 °C | 1172 °C | | 0 °C | 112.8 °C | 884 °C |  boiling point | 279.6 °C | | | 99.9839 °C | 444.7 °C | 1429 °C | 330 °C density | 1.8305 g/cm^3 | 1.856 g/cm^3 | | 1 g/cm^3 | 2.07 g/cm^3 | 2.68 g/cm^3 | 1.84 g/cm^3 solubility in water | very soluble | | | | | soluble |  surface tension | 0.0735 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | odorless | | | odorless | | | odorless
| sulfuric acid | sodium sulfide | Na2CrO7 | water | mixed sulfur | sodium sulfate | chromium sulfate molar mass | 98.07 g/mol | 78.04 g/mol | 209.97 g/mol | 18.015 g/mol | 32.06 g/mol | 142.04 g/mol | 392.2 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) melting point | 10.371 °C | 1172 °C | | 0 °C | 112.8 °C | 884 °C | boiling point | 279.6 °C | | | 99.9839 °C | 444.7 °C | 1429 °C | 330 °C density | 1.8305 g/cm^3 | 1.856 g/cm^3 | | 1 g/cm^3 | 2.07 g/cm^3 | 2.68 g/cm^3 | 1.84 g/cm^3 solubility in water | very soluble | | | | | soluble | surface tension | 0.0735 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | odorless | | | odorless | | | odorless

Units