Search

FeSO4 + K2S2O8 = K2SO4 + Fe2(SO4)3

Input interpretation

FeSO_4 duretter + K_2S_2O_8 potassium persulfate ⟶ K_2SO_4 potassium sulfate + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate
FeSO_4 duretter + K_2S_2O_8 potassium persulfate ⟶ K_2SO_4 potassium sulfate + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate

Balanced equation

Balance the chemical equation algebraically: FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeSO_4 + c_2 K_2S_2O_8 ⟶ c_3 K_2SO_4 + c_4 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, O, S and K: Fe: | c_1 = 2 c_4 O: | 4 c_1 + 8 c_2 = 4 c_3 + 12 c_4 S: | c_1 + 2 c_2 = c_3 + 3 c_4 K: | 2 c_2 = 2 c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 1 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 2 FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O
Balance the chemical equation algebraically: FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeSO_4 + c_2 K_2S_2O_8 ⟶ c_3 K_2SO_4 + c_4 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, O, S and K: Fe: | c_1 = 2 c_4 O: | 4 c_1 + 8 c_2 = 4 c_3 + 12 c_4 S: | c_1 + 2 c_2 = c_3 + 3 c_4 K: | 2 c_2 = 2 c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 1 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O

Structures

 + ⟶ +
+ ⟶ +

Names

duretter + potassium persulfate ⟶ potassium sulfate + iron(III) sulfate hydrate
duretter + potassium persulfate ⟶ potassium sulfate + iron(III) sulfate hydrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 2 | -2 K_2S_2O_8 | 1 | -1 K_2SO_4 | 1 | 1 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeSO_4 | 2 | -2 | ([FeSO4])^(-2) K_2S_2O_8 | 1 | -1 | ([K2S2O8])^(-1) K_2SO_4 | 1 | 1 | [K2SO4] Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([FeSO4])^(-2) ([K2S2O8])^(-1) [K2SO4] [Fe2(SO4)3·xH2O] = ([K2SO4] [Fe2(SO4)3·xH2O])/(([FeSO4])^2 [K2S2O8])
Construct the equilibrium constant, K, expression for: FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 2 | -2 K_2S_2O_8 | 1 | -1 K_2SO_4 | 1 | 1 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeSO_4 | 2 | -2 | ([FeSO4])^(-2) K_2S_2O_8 | 1 | -1 | ([K2S2O8])^(-1) K_2SO_4 | 1 | 1 | [K2SO4] Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([FeSO4])^(-2) ([K2S2O8])^(-1) [K2SO4] [Fe2(SO4)3·xH2O] = ([K2SO4] [Fe2(SO4)3·xH2O])/(([FeSO4])^2 [K2S2O8])

Rate of reaction

Construct the rate of reaction expression for: FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 2 | -2 K_2S_2O_8 | 1 | -1 K_2SO_4 | 1 | 1 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeSO_4 | 2 | -2 | -1/2 (Δ[FeSO4])/(Δt) K_2S_2O_8 | 1 | -1 | -(Δ[K2S2O8])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/2 (Δ[FeSO4])/(Δt) = -(Δ[K2S2O8])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 FeSO_4 + K_2S_2O_8 ⟶ K_2SO_4 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 2 | -2 K_2S_2O_8 | 1 | -1 K_2SO_4 | 1 | 1 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeSO_4 | 2 | -2 | -1/2 (Δ[FeSO4])/(Δt) K_2S_2O_8 | 1 | -1 | -(Δ[K2S2O8])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[FeSO4])/(Δt) = -(Δ[K2S2O8])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | duretter | potassium persulfate | potassium sulfate | iron(III) sulfate hydrate formula | FeSO_4 | K_2S_2O_8 | K_2SO_4 | Fe_2(SO_4)_3·xH_2O Hill formula | FeO_4S | K_2O_8S_2 | K_2O_4S | Fe_2O_12S_3 name | duretter | potassium persulfate | potassium sulfate | iron(III) sulfate hydrate IUPAC name | iron(+2) cation sulfate | dipotassium sulfonatooxy sulfate | dipotassium sulfate | diferric trisulfate
| duretter | potassium persulfate | potassium sulfate | iron(III) sulfate hydrate formula | FeSO_4 | K_2S_2O_8 | K_2SO_4 | Fe_2(SO_4)_3·xH_2O Hill formula | FeO_4S | K_2O_8S_2 | K_2O_4S | Fe_2O_12S_3 name | duretter | potassium persulfate | potassium sulfate | iron(III) sulfate hydrate IUPAC name | iron(+2) cation sulfate | dipotassium sulfonatooxy sulfate | dipotassium sulfate | diferric trisulfate

Substance properties

 | duretter | potassium persulfate | potassium sulfate | iron(III) sulfate hydrate molar mass | 151.9 g/mol | 270.31 g/mol | 174.25 g/mol | 399.9 g/mol phase | | solid (at STP) | |  melting point | | 100 °C | |  density | 2.841 g/cm^3 | 2.477 g/cm^3 | |  solubility in water | | soluble | soluble | slightly soluble
| duretter | potassium persulfate | potassium sulfate | iron(III) sulfate hydrate molar mass | 151.9 g/mol | 270.31 g/mol | 174.25 g/mol | 399.9 g/mol phase | | solid (at STP) | | melting point | | 100 °C | | density | 2.841 g/cm^3 | 2.477 g/cm^3 | | solubility in water | | soluble | soluble | slightly soluble

Units