Search

HNO3 + FeS2 = H2O + H2SO4 + NO2 + Fe2(SO4)3

Input interpretation

HNO_3 nitric acid + FeS_2 pyrite ⟶ H_2O water + H_2SO_4 sulfuric acid + NO_2 nitrogen dioxide + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate
HNO_3 nitric acid + FeS_2 pyrite ⟶ H_2O water + H_2SO_4 sulfuric acid + NO_2 nitrogen dioxide + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate

Balanced equation

Balance the chemical equation algebraically: HNO_3 + FeS_2 ⟶ H_2O + H_2SO_4 + NO_2 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 FeS_2 ⟶ c_3 H_2O + c_4 H_2SO_4 + c_5 NO_2 + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Fe and S: H: | c_1 = 2 c_3 + 2 c_4 N: | c_1 = c_5 O: | 3 c_1 = c_3 + 4 c_4 + 2 c_5 + 12 c_6 Fe: | c_2 = 2 c_6 S: | 2 c_2 = c_4 + 3 c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 30 c_2 = 2 c_3 = 14 c_4 = 1 c_5 = 30 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 30 HNO_3 + 2 FeS_2 ⟶ 14 H_2O + H_2SO_4 + 30 NO_2 + Fe_2(SO_4)_3·xH_2O
Balance the chemical equation algebraically: HNO_3 + FeS_2 ⟶ H_2O + H_2SO_4 + NO_2 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 FeS_2 ⟶ c_3 H_2O + c_4 H_2SO_4 + c_5 NO_2 + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Fe and S: H: | c_1 = 2 c_3 + 2 c_4 N: | c_1 = c_5 O: | 3 c_1 = c_3 + 4 c_4 + 2 c_5 + 12 c_6 Fe: | c_2 = 2 c_6 S: | 2 c_2 = c_4 + 3 c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 30 c_2 = 2 c_3 = 14 c_4 = 1 c_5 = 30 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 30 HNO_3 + 2 FeS_2 ⟶ 14 H_2O + H_2SO_4 + 30 NO_2 + Fe_2(SO_4)_3·xH_2O

Structures

 + ⟶ + + +
+ ⟶ + + +

Names

nitric acid + pyrite ⟶ water + sulfuric acid + nitrogen dioxide + iron(III) sulfate hydrate
nitric acid + pyrite ⟶ water + sulfuric acid + nitrogen dioxide + iron(III) sulfate hydrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: HNO_3 + FeS_2 ⟶ H_2O + H_2SO_4 + NO_2 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 30 HNO_3 + 2 FeS_2 ⟶ 14 H_2O + H_2SO_4 + 30 NO_2 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 30 | -30 FeS_2 | 2 | -2 H_2O | 14 | 14 H_2SO_4 | 1 | 1 NO_2 | 30 | 30 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 30 | -30 | ([HNO3])^(-30) FeS_2 | 2 | -2 | ([FeS2])^(-2) H_2O | 14 | 14 | ([H2O])^14 H_2SO_4 | 1 | 1 | [H2SO4] NO_2 | 30 | 30 | ([NO2])^30 Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HNO3])^(-30) ([FeS2])^(-2) ([H2O])^14 [H2SO4] ([NO2])^30 [Fe2(SO4)3·xH2O] = (([H2O])^14 [H2SO4] ([NO2])^30 [Fe2(SO4)3·xH2O])/(([HNO3])^30 ([FeS2])^2)
Construct the equilibrium constant, K, expression for: HNO_3 + FeS_2 ⟶ H_2O + H_2SO_4 + NO_2 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 30 HNO_3 + 2 FeS_2 ⟶ 14 H_2O + H_2SO_4 + 30 NO_2 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 30 | -30 FeS_2 | 2 | -2 H_2O | 14 | 14 H_2SO_4 | 1 | 1 NO_2 | 30 | 30 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 30 | -30 | ([HNO3])^(-30) FeS_2 | 2 | -2 | ([FeS2])^(-2) H_2O | 14 | 14 | ([H2O])^14 H_2SO_4 | 1 | 1 | [H2SO4] NO_2 | 30 | 30 | ([NO2])^30 Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HNO3])^(-30) ([FeS2])^(-2) ([H2O])^14 [H2SO4] ([NO2])^30 [Fe2(SO4)3·xH2O] = (([H2O])^14 [H2SO4] ([NO2])^30 [Fe2(SO4)3·xH2O])/(([HNO3])^30 ([FeS2])^2)

Rate of reaction

Construct the rate of reaction expression for: HNO_3 + FeS_2 ⟶ H_2O + H_2SO_4 + NO_2 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 30 HNO_3 + 2 FeS_2 ⟶ 14 H_2O + H_2SO_4 + 30 NO_2 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 30 | -30 FeS_2 | 2 | -2 H_2O | 14 | 14 H_2SO_4 | 1 | 1 NO_2 | 30 | 30 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 30 | -30 | -1/30 (Δ[HNO3])/(Δt) FeS_2 | 2 | -2 | -1/2 (Δ[FeS2])/(Δt) H_2O | 14 | 14 | 1/14 (Δ[H2O])/(Δt) H_2SO_4 | 1 | 1 | (Δ[H2SO4])/(Δt) NO_2 | 30 | 30 | 1/30 (Δ[NO2])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/30 (Δ[HNO3])/(Δt) = -1/2 (Δ[FeS2])/(Δt) = 1/14 (Δ[H2O])/(Δt) = (Δ[H2SO4])/(Δt) = 1/30 (Δ[NO2])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HNO_3 + FeS_2 ⟶ H_2O + H_2SO_4 + NO_2 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 30 HNO_3 + 2 FeS_2 ⟶ 14 H_2O + H_2SO_4 + 30 NO_2 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 30 | -30 FeS_2 | 2 | -2 H_2O | 14 | 14 H_2SO_4 | 1 | 1 NO_2 | 30 | 30 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 30 | -30 | -1/30 (Δ[HNO3])/(Δt) FeS_2 | 2 | -2 | -1/2 (Δ[FeS2])/(Δt) H_2O | 14 | 14 | 1/14 (Δ[H2O])/(Δt) H_2SO_4 | 1 | 1 | (Δ[H2SO4])/(Δt) NO_2 | 30 | 30 | 1/30 (Δ[NO2])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/30 (Δ[HNO3])/(Δt) = -1/2 (Δ[FeS2])/(Δt) = 1/14 (Δ[H2O])/(Δt) = (Δ[H2SO4])/(Δt) = 1/30 (Δ[NO2])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | nitric acid | pyrite | water | sulfuric acid | nitrogen dioxide | iron(III) sulfate hydrate formula | HNO_3 | FeS_2 | H_2O | H_2SO_4 | NO_2 | Fe_2(SO_4)_3·xH_2O Hill formula | HNO_3 | FeS_2 | H_2O | H_2O_4S | NO_2 | Fe_2O_12S_3 name | nitric acid | pyrite | water | sulfuric acid | nitrogen dioxide | iron(III) sulfate hydrate IUPAC name | nitric acid | bis(sulfanylidene)iron | water | sulfuric acid | Nitrogen dioxide | diferric trisulfate
| nitric acid | pyrite | water | sulfuric acid | nitrogen dioxide | iron(III) sulfate hydrate formula | HNO_3 | FeS_2 | H_2O | H_2SO_4 | NO_2 | Fe_2(SO_4)_3·xH_2O Hill formula | HNO_3 | FeS_2 | H_2O | H_2O_4S | NO_2 | Fe_2O_12S_3 name | nitric acid | pyrite | water | sulfuric acid | nitrogen dioxide | iron(III) sulfate hydrate IUPAC name | nitric acid | bis(sulfanylidene)iron | water | sulfuric acid | Nitrogen dioxide | diferric trisulfate