Search

H2SO4 + KMnO4 + C3H8O = H2O + K2SO4 + MnSO4 + C3H8O2

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + CH_3CH_2CH_2OH N-propanol ⟶ H_2O water + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + CH_3OCH_2CH_2OH methyl oxitol
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + CH_3CH_2CH_2OH N-propanol ⟶ H_2O water + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + CH_3OCH_2CH_2OH methyl oxitol

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + CH_3CH_2CH_2OH ⟶ H_2O + K_2SO_4 + MnSO_4 + CH_3OCH_2CH_2OH Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 CH_3CH_2CH_2OH ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 MnSO_4 + c_7 CH_3OCH_2CH_2OH Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn and C: H: | 2 c_1 + 8 c_3 = 2 c_4 + 8 c_7 O: | 4 c_1 + 4 c_2 + c_3 = c_4 + 4 c_5 + 4 c_6 + 2 c_7 S: | c_1 = c_5 + c_6 K: | c_2 = 2 c_5 Mn: | c_2 = c_6 C: | 3 c_3 = 3 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 5 c_4 = 3 c_5 = 1 c_6 = 2 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 H_2SO_4 + 2 KMnO_4 + 5 CH_3CH_2CH_2OH ⟶ 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 CH_3OCH_2CH_2OH
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + CH_3CH_2CH_2OH ⟶ H_2O + K_2SO_4 + MnSO_4 + CH_3OCH_2CH_2OH Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 CH_3CH_2CH_2OH ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 MnSO_4 + c_7 CH_3OCH_2CH_2OH Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn and C: H: | 2 c_1 + 8 c_3 = 2 c_4 + 8 c_7 O: | 4 c_1 + 4 c_2 + c_3 = c_4 + 4 c_5 + 4 c_6 + 2 c_7 S: | c_1 = c_5 + c_6 K: | c_2 = 2 c_5 Mn: | c_2 = c_6 C: | 3 c_3 = 3 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 5 c_4 = 3 c_5 = 1 c_6 = 2 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2SO_4 + 2 KMnO_4 + 5 CH_3CH_2CH_2OH ⟶ 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 CH_3OCH_2CH_2OH

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + potassium permanganate + N-propanol ⟶ water + potassium sulfate + manganese(II) sulfate + methyl oxitol
sulfuric acid + potassium permanganate + N-propanol ⟶ water + potassium sulfate + manganese(II) sulfate + methyl oxitol

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + CH_3CH_2CH_2OH ⟶ H_2O + K_2SO_4 + MnSO_4 + CH_3OCH_2CH_2OH Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 2 KMnO_4 + 5 CH_3CH_2CH_2OH ⟶ 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 CH_3OCH_2CH_2OH Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 KMnO_4 | 2 | -2 CH_3CH_2CH_2OH | 5 | -5 H_2O | 3 | 3 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 CH_3OCH_2CH_2OH | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) CH_3CH_2CH_2OH | 5 | -5 | ([CH3CH2CH2OH])^(-5) H_2O | 3 | 3 | ([H2O])^3 K_2SO_4 | 1 | 1 | [K2SO4] MnSO_4 | 2 | 2 | ([MnSO4])^2 CH_3OCH_2CH_2OH | 5 | 5 | ([CH3OCH2CH2OH])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-3) ([KMnO4])^(-2) ([CH3CH2CH2OH])^(-5) ([H2O])^3 [K2SO4] ([MnSO4])^2 ([CH3OCH2CH2OH])^5 = (([H2O])^3 [K2SO4] ([MnSO4])^2 ([CH3OCH2CH2OH])^5)/(([H2SO4])^3 ([KMnO4])^2 ([CH3CH2CH2OH])^5)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + CH_3CH_2CH_2OH ⟶ H_2O + K_2SO_4 + MnSO_4 + CH_3OCH_2CH_2OH Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 2 KMnO_4 + 5 CH_3CH_2CH_2OH ⟶ 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 CH_3OCH_2CH_2OH Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 KMnO_4 | 2 | -2 CH_3CH_2CH_2OH | 5 | -5 H_2O | 3 | 3 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 CH_3OCH_2CH_2OH | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) CH_3CH_2CH_2OH | 5 | -5 | ([CH3CH2CH2OH])^(-5) H_2O | 3 | 3 | ([H2O])^3 K_2SO_4 | 1 | 1 | [K2SO4] MnSO_4 | 2 | 2 | ([MnSO4])^2 CH_3OCH_2CH_2OH | 5 | 5 | ([CH3OCH2CH2OH])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-3) ([KMnO4])^(-2) ([CH3CH2CH2OH])^(-5) ([H2O])^3 [K2SO4] ([MnSO4])^2 ([CH3OCH2CH2OH])^5 = (([H2O])^3 [K2SO4] ([MnSO4])^2 ([CH3OCH2CH2OH])^5)/(([H2SO4])^3 ([KMnO4])^2 ([CH3CH2CH2OH])^5)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + CH_3CH_2CH_2OH ⟶ H_2O + K_2SO_4 + MnSO_4 + CH_3OCH_2CH_2OH Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 2 KMnO_4 + 5 CH_3CH_2CH_2OH ⟶ 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 CH_3OCH_2CH_2OH Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 KMnO_4 | 2 | -2 CH_3CH_2CH_2OH | 5 | -5 H_2O | 3 | 3 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 CH_3OCH_2CH_2OH | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) CH_3CH_2CH_2OH | 5 | -5 | -1/5 (Δ[CH3CH2CH2OH])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnSO_4 | 2 | 2 | 1/2 (Δ[MnSO4])/(Δt) CH_3OCH_2CH_2OH | 5 | 5 | 1/5 (Δ[CH3OCH2CH2OH])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/5 (Δ[CH3CH2CH2OH])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnSO4])/(Δt) = 1/5 (Δ[CH3OCH2CH2OH])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + CH_3CH_2CH_2OH ⟶ H_2O + K_2SO_4 + MnSO_4 + CH_3OCH_2CH_2OH Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 2 KMnO_4 + 5 CH_3CH_2CH_2OH ⟶ 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 CH_3OCH_2CH_2OH Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 KMnO_4 | 2 | -2 CH_3CH_2CH_2OH | 5 | -5 H_2O | 3 | 3 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 CH_3OCH_2CH_2OH | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) CH_3CH_2CH_2OH | 5 | -5 | -1/5 (Δ[CH3CH2CH2OH])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnSO_4 | 2 | 2 | 1/2 (Δ[MnSO4])/(Δt) CH_3OCH_2CH_2OH | 5 | 5 | 1/5 (Δ[CH3OCH2CH2OH])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/5 (Δ[CH3CH2CH2OH])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnSO4])/(Δt) = 1/5 (Δ[CH3OCH2CH2OH])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | N-propanol | water | potassium sulfate | manganese(II) sulfate | methyl oxitol formula | H_2SO_4 | KMnO_4 | CH_3CH_2CH_2OH | H_2O | K_2SO_4 | MnSO_4 | CH_3OCH_2CH_2OH Hill formula | H_2O_4S | KMnO_4 | C_3H_8O | H_2O | K_2O_4S | MnSO_4 | C_3H_8O_2 name | sulfuric acid | potassium permanganate | N-propanol | water | potassium sulfate | manganese(II) sulfate | methyl oxitol IUPAC name | sulfuric acid | potassium permanganate | propan-1-ol | water | dipotassium sulfate | manganese(+2) cation sulfate | 2-methoxyethanol
| sulfuric acid | potassium permanganate | N-propanol | water | potassium sulfate | manganese(II) sulfate | methyl oxitol formula | H_2SO_4 | KMnO_4 | CH_3CH_2CH_2OH | H_2O | K_2SO_4 | MnSO_4 | CH_3OCH_2CH_2OH Hill formula | H_2O_4S | KMnO_4 | C_3H_8O | H_2O | K_2O_4S | MnSO_4 | C_3H_8O_2 name | sulfuric acid | potassium permanganate | N-propanol | water | potassium sulfate | manganese(II) sulfate | methyl oxitol IUPAC name | sulfuric acid | potassium permanganate | propan-1-ol | water | dipotassium sulfate | manganese(+2) cation sulfate | 2-methoxyethanol