Search

HCl + Na2S2O3 + KIO3 = H2O + NaCl + KI + Na2S4O6

Input interpretation

HCl hydrogen chloride + Na_2S_2O_3 sodium hyposulfite + KIO_3 potassium iodate ⟶ H_2O water + NaCl sodium chloride + KI potassium iodide + Na2S4O6
HCl hydrogen chloride + Na_2S_2O_3 sodium hyposulfite + KIO_3 potassium iodate ⟶ H_2O water + NaCl sodium chloride + KI potassium iodide + Na2S4O6

Balanced equation

Balance the chemical equation algebraically: HCl + Na_2S_2O_3 + KIO_3 ⟶ H_2O + NaCl + KI + Na2S4O6 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HCl + c_2 Na_2S_2O_3 + c_3 KIO_3 ⟶ c_4 H_2O + c_5 NaCl + c_6 KI + c_7 Na2S4O6 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, Na, O, S, I and K: Cl: | c_1 = c_5 H: | c_1 = 2 c_4 Na: | 2 c_2 = c_5 + 2 c_7 O: | 3 c_2 + 3 c_3 = c_4 + 6 c_7 S: | 2 c_2 = 4 c_7 I: | c_3 = c_6 K: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 6 c_6 = 1 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 HCl + 6 Na_2S_2O_3 + KIO_3 ⟶ 3 H_2O + 6 NaCl + KI + 3 Na2S4O6
Balance the chemical equation algebraically: HCl + Na_2S_2O_3 + KIO_3 ⟶ H_2O + NaCl + KI + Na2S4O6 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HCl + c_2 Na_2S_2O_3 + c_3 KIO_3 ⟶ c_4 H_2O + c_5 NaCl + c_6 KI + c_7 Na2S4O6 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, Na, O, S, I and K: Cl: | c_1 = c_5 H: | c_1 = 2 c_4 Na: | 2 c_2 = c_5 + 2 c_7 O: | 3 c_2 + 3 c_3 = c_4 + 6 c_7 S: | 2 c_2 = 4 c_7 I: | c_3 = c_6 K: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 6 c_6 = 1 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 HCl + 6 Na_2S_2O_3 + KIO_3 ⟶ 3 H_2O + 6 NaCl + KI + 3 Na2S4O6

Structures

 + + ⟶ + + + Na2S4O6
+ + ⟶ + + + Na2S4O6

Names

hydrogen chloride + sodium hyposulfite + potassium iodate ⟶ water + sodium chloride + potassium iodide + Na2S4O6
hydrogen chloride + sodium hyposulfite + potassium iodate ⟶ water + sodium chloride + potassium iodide + Na2S4O6

Equilibrium constant

Construct the equilibrium constant, K, expression for: HCl + Na_2S_2O_3 + KIO_3 ⟶ H_2O + NaCl + KI + Na2S4O6 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 HCl + 6 Na_2S_2O_3 + KIO_3 ⟶ 3 H_2O + 6 NaCl + KI + 3 Na2S4O6 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 Na_2S_2O_3 | 6 | -6 KIO_3 | 1 | -1 H_2O | 3 | 3 NaCl | 6 | 6 KI | 1 | 1 Na2S4O6 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HCl | 6 | -6 | ([HCl])^(-6) Na_2S_2O_3 | 6 | -6 | ([Na2S2O3])^(-6) KIO_3 | 1 | -1 | ([KIO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 NaCl | 6 | 6 | ([NaCl])^6 KI | 1 | 1 | [KI] Na2S4O6 | 3 | 3 | ([Na2S4O6])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HCl])^(-6) ([Na2S2O3])^(-6) ([KIO3])^(-1) ([H2O])^3 ([NaCl])^6 [KI] ([Na2S4O6])^3 = (([H2O])^3 ([NaCl])^6 [KI] ([Na2S4O6])^3)/(([HCl])^6 ([Na2S2O3])^6 [KIO3])
Construct the equilibrium constant, K, expression for: HCl + Na_2S_2O_3 + KIO_3 ⟶ H_2O + NaCl + KI + Na2S4O6 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 HCl + 6 Na_2S_2O_3 + KIO_3 ⟶ 3 H_2O + 6 NaCl + KI + 3 Na2S4O6 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 Na_2S_2O_3 | 6 | -6 KIO_3 | 1 | -1 H_2O | 3 | 3 NaCl | 6 | 6 KI | 1 | 1 Na2S4O6 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HCl | 6 | -6 | ([HCl])^(-6) Na_2S_2O_3 | 6 | -6 | ([Na2S2O3])^(-6) KIO_3 | 1 | -1 | ([KIO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 NaCl | 6 | 6 | ([NaCl])^6 KI | 1 | 1 | [KI] Na2S4O6 | 3 | 3 | ([Na2S4O6])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HCl])^(-6) ([Na2S2O3])^(-6) ([KIO3])^(-1) ([H2O])^3 ([NaCl])^6 [KI] ([Na2S4O6])^3 = (([H2O])^3 ([NaCl])^6 [KI] ([Na2S4O6])^3)/(([HCl])^6 ([Na2S2O3])^6 [KIO3])

Rate of reaction

Construct the rate of reaction expression for: HCl + Na_2S_2O_3 + KIO_3 ⟶ H_2O + NaCl + KI + Na2S4O6 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 HCl + 6 Na_2S_2O_3 + KIO_3 ⟶ 3 H_2O + 6 NaCl + KI + 3 Na2S4O6 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 Na_2S_2O_3 | 6 | -6 KIO_3 | 1 | -1 H_2O | 3 | 3 NaCl | 6 | 6 KI | 1 | 1 Na2S4O6 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HCl | 6 | -6 | -1/6 (Δ[HCl])/(Δt) Na_2S_2O_3 | 6 | -6 | -1/6 (Δ[Na2S2O3])/(Δt) KIO_3 | 1 | -1 | -(Δ[KIO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) NaCl | 6 | 6 | 1/6 (Δ[NaCl])/(Δt) KI | 1 | 1 | (Δ[KI])/(Δt) Na2S4O6 | 3 | 3 | 1/3 (Δ[Na2S4O6])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[HCl])/(Δt) = -1/6 (Δ[Na2S2O3])/(Δt) = -(Δ[KIO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/6 (Δ[NaCl])/(Δt) = (Δ[KI])/(Δt) = 1/3 (Δ[Na2S4O6])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HCl + Na_2S_2O_3 + KIO_3 ⟶ H_2O + NaCl + KI + Na2S4O6 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 HCl + 6 Na_2S_2O_3 + KIO_3 ⟶ 3 H_2O + 6 NaCl + KI + 3 Na2S4O6 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 Na_2S_2O_3 | 6 | -6 KIO_3 | 1 | -1 H_2O | 3 | 3 NaCl | 6 | 6 KI | 1 | 1 Na2S4O6 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HCl | 6 | -6 | -1/6 (Δ[HCl])/(Δt) Na_2S_2O_3 | 6 | -6 | -1/6 (Δ[Na2S2O3])/(Δt) KIO_3 | 1 | -1 | -(Δ[KIO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) NaCl | 6 | 6 | 1/6 (Δ[NaCl])/(Δt) KI | 1 | 1 | (Δ[KI])/(Δt) Na2S4O6 | 3 | 3 | 1/3 (Δ[Na2S4O6])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[HCl])/(Δt) = -1/6 (Δ[Na2S2O3])/(Δt) = -(Δ[KIO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/6 (Δ[NaCl])/(Δt) = (Δ[KI])/(Δt) = 1/3 (Δ[Na2S4O6])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | hydrogen chloride | sodium hyposulfite | potassium iodate | water | sodium chloride | potassium iodide | Na2S4O6 formula | HCl | Na_2S_2O_3 | KIO_3 | H_2O | NaCl | KI | Na2S4O6 Hill formula | ClH | Na_2O_3S_2 | IKO_3 | H_2O | ClNa | IK | Na2O6S4 name | hydrogen chloride | sodium hyposulfite | potassium iodate | water | sodium chloride | potassium iodide |
| hydrogen chloride | sodium hyposulfite | potassium iodate | water | sodium chloride | potassium iodide | Na2S4O6 formula | HCl | Na_2S_2O_3 | KIO_3 | H_2O | NaCl | KI | Na2S4O6 Hill formula | ClH | Na_2O_3S_2 | IKO_3 | H_2O | ClNa | IK | Na2O6S4 name | hydrogen chloride | sodium hyposulfite | potassium iodate | water | sodium chloride | potassium iodide |