Search

Fe2(SO4)3 + AlCl3 = FeCl3 + Al2(SO4)3

Input interpretation

Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + AlCl_3 aluminum chloride ⟶ FeCl_3 iron(III) chloride + Al_2(SO_4)_3 aluminum sulfate
Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + AlCl_3 aluminum chloride ⟶ FeCl_3 iron(III) chloride + Al_2(SO_4)_3 aluminum sulfate

Balanced equation

Balance the chemical equation algebraically: Fe_2(SO_4)_3·xH_2O + AlCl_3 ⟶ FeCl_3 + Al_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Fe_2(SO_4)_3·xH_2O + c_2 AlCl_3 ⟶ c_3 FeCl_3 + c_4 Al_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, O, S, Al and Cl: Fe: | 2 c_1 = c_3 O: | 12 c_1 = 12 c_4 S: | 3 c_1 = 3 c_4 Al: | c_2 = 2 c_4 Cl: | 3 c_2 = 3 c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | Fe_2(SO_4)_3·xH_2O + 2 AlCl_3 ⟶ 2 FeCl_3 + Al_2(SO_4)_3
Balance the chemical equation algebraically: Fe_2(SO_4)_3·xH_2O + AlCl_3 ⟶ FeCl_3 + Al_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Fe_2(SO_4)_3·xH_2O + c_2 AlCl_3 ⟶ c_3 FeCl_3 + c_4 Al_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, O, S, Al and Cl: Fe: | 2 c_1 = c_3 O: | 12 c_1 = 12 c_4 S: | 3 c_1 = 3 c_4 Al: | c_2 = 2 c_4 Cl: | 3 c_2 = 3 c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | Fe_2(SO_4)_3·xH_2O + 2 AlCl_3 ⟶ 2 FeCl_3 + Al_2(SO_4)_3

Structures

 + ⟶ +
+ ⟶ +

Names

iron(III) sulfate hydrate + aluminum chloride ⟶ iron(III) chloride + aluminum sulfate
iron(III) sulfate hydrate + aluminum chloride ⟶ iron(III) chloride + aluminum sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: Fe_2(SO_4)_3·xH_2O + AlCl_3 ⟶ FeCl_3 + Al_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Fe_2(SO_4)_3·xH_2O + 2 AlCl_3 ⟶ 2 FeCl_3 + Al_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe_2(SO_4)_3·xH_2O | 1 | -1 AlCl_3 | 2 | -2 FeCl_3 | 2 | 2 Al_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Fe_2(SO_4)_3·xH_2O | 1 | -1 | ([Fe2(SO4)3·xH2O])^(-1) AlCl_3 | 2 | -2 | ([AlCl3])^(-2) FeCl_3 | 2 | 2 | ([FeCl3])^2 Al_2(SO_4)_3 | 1 | 1 | [Al2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Fe2(SO4)3·xH2O])^(-1) ([AlCl3])^(-2) ([FeCl3])^2 [Al2(SO4)3] = (([FeCl3])^2 [Al2(SO4)3])/([Fe2(SO4)3·xH2O] ([AlCl3])^2)
Construct the equilibrium constant, K, expression for: Fe_2(SO_4)_3·xH_2O + AlCl_3 ⟶ FeCl_3 + Al_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Fe_2(SO_4)_3·xH_2O + 2 AlCl_3 ⟶ 2 FeCl_3 + Al_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe_2(SO_4)_3·xH_2O | 1 | -1 AlCl_3 | 2 | -2 FeCl_3 | 2 | 2 Al_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Fe_2(SO_4)_3·xH_2O | 1 | -1 | ([Fe2(SO4)3·xH2O])^(-1) AlCl_3 | 2 | -2 | ([AlCl3])^(-2) FeCl_3 | 2 | 2 | ([FeCl3])^2 Al_2(SO_4)_3 | 1 | 1 | [Al2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Fe2(SO4)3·xH2O])^(-1) ([AlCl3])^(-2) ([FeCl3])^2 [Al2(SO4)3] = (([FeCl3])^2 [Al2(SO4)3])/([Fe2(SO4)3·xH2O] ([AlCl3])^2)

Rate of reaction

Construct the rate of reaction expression for: Fe_2(SO_4)_3·xH_2O + AlCl_3 ⟶ FeCl_3 + Al_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Fe_2(SO_4)_3·xH_2O + 2 AlCl_3 ⟶ 2 FeCl_3 + Al_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe_2(SO_4)_3·xH_2O | 1 | -1 AlCl_3 | 2 | -2 FeCl_3 | 2 | 2 Al_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Fe_2(SO_4)_3·xH_2O | 1 | -1 | -(Δ[Fe2(SO4)3·xH2O])/(Δt) AlCl_3 | 2 | -2 | -1/2 (Δ[AlCl3])/(Δt) FeCl_3 | 2 | 2 | 1/2 (Δ[FeCl3])/(Δt) Al_2(SO_4)_3 | 1 | 1 | (Δ[Al2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[Fe2(SO4)3·xH2O])/(Δt) = -1/2 (Δ[AlCl3])/(Δt) = 1/2 (Δ[FeCl3])/(Δt) = (Δ[Al2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Fe_2(SO_4)_3·xH_2O + AlCl_3 ⟶ FeCl_3 + Al_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Fe_2(SO_4)_3·xH_2O + 2 AlCl_3 ⟶ 2 FeCl_3 + Al_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe_2(SO_4)_3·xH_2O | 1 | -1 AlCl_3 | 2 | -2 FeCl_3 | 2 | 2 Al_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Fe_2(SO_4)_3·xH_2O | 1 | -1 | -(Δ[Fe2(SO4)3·xH2O])/(Δt) AlCl_3 | 2 | -2 | -1/2 (Δ[AlCl3])/(Δt) FeCl_3 | 2 | 2 | 1/2 (Δ[FeCl3])/(Δt) Al_2(SO_4)_3 | 1 | 1 | (Δ[Al2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[Fe2(SO4)3·xH2O])/(Δt) = -1/2 (Δ[AlCl3])/(Δt) = 1/2 (Δ[FeCl3])/(Δt) = (Δ[Al2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | iron(III) sulfate hydrate | aluminum chloride | iron(III) chloride | aluminum sulfate formula | Fe_2(SO_4)_3·xH_2O | AlCl_3 | FeCl_3 | Al_2(SO_4)_3 Hill formula | Fe_2O_12S_3 | AlCl_3 | Cl_3Fe | Al_2O_12S_3 name | iron(III) sulfate hydrate | aluminum chloride | iron(III) chloride | aluminum sulfate IUPAC name | diferric trisulfate | trichloroalumane | trichloroiron | dialuminum trisulfate
| iron(III) sulfate hydrate | aluminum chloride | iron(III) chloride | aluminum sulfate formula | Fe_2(SO_4)_3·xH_2O | AlCl_3 | FeCl_3 | Al_2(SO_4)_3 Hill formula | Fe_2O_12S_3 | AlCl_3 | Cl_3Fe | Al_2O_12S_3 name | iron(III) sulfate hydrate | aluminum chloride | iron(III) chloride | aluminum sulfate IUPAC name | diferric trisulfate | trichloroalumane | trichloroiron | dialuminum trisulfate

Substance properties

 | iron(III) sulfate hydrate | aluminum chloride | iron(III) chloride | aluminum sulfate molar mass | 399.9 g/mol | 133.3 g/mol | 162.2 g/mol | 342.1 g/mol phase | | solid (at STP) | solid (at STP) | solid (at STP) melting point | | 190 °C | 304 °C | 770 °C density | | | | 2.71 g/cm^3 solubility in water | slightly soluble | | | soluble
| iron(III) sulfate hydrate | aluminum chloride | iron(III) chloride | aluminum sulfate molar mass | 399.9 g/mol | 133.3 g/mol | 162.2 g/mol | 342.1 g/mol phase | | solid (at STP) | solid (at STP) | solid (at STP) melting point | | 190 °C | 304 °C | 770 °C density | | | | 2.71 g/cm^3 solubility in water | slightly soluble | | | soluble

Units