Search

H2SO4 + Na2CrO4 = H2O + Na2SO4 + CrO3

Input interpretation

H_2SO_4 sulfuric acid + Na_2CrO_4 sodium chromate ⟶ H_2O water + Na_2SO_4 sodium sulfate + CrO_3 chromium trioxide
H_2SO_4 sulfuric acid + Na_2CrO_4 sodium chromate ⟶ H_2O water + Na_2SO_4 sodium sulfate + CrO_3 chromium trioxide

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Na_2CrO_4 ⟶ c_3 H_2O + c_4 Na_2SO_4 + c_5 CrO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr and Na: H: | 2 c_1 = 2 c_3 O: | 4 c_1 + 4 c_2 = c_3 + 4 c_4 + 3 c_5 S: | c_1 = c_4 Cr: | c_2 = c_5 Na: | 2 c_2 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3
Balance the chemical equation algebraically: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Na_2CrO_4 ⟶ c_3 H_2O + c_4 Na_2SO_4 + c_5 CrO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr and Na: H: | 2 c_1 = 2 c_3 O: | 4 c_1 + 4 c_2 = c_3 + 4 c_4 + 3 c_5 S: | c_1 = c_4 Cr: | c_2 = c_5 Na: | 2 c_2 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3

Structures

 + ⟶ + +
+ ⟶ + +

Names

sulfuric acid + sodium chromate ⟶ water + sodium sulfate + chromium trioxide
sulfuric acid + sodium chromate ⟶ water + sodium sulfate + chromium trioxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2CrO_4 | 1 | -1 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 CrO_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) Na_2CrO_4 | 1 | -1 | ([Na2CrO4])^(-1) H_2O | 1 | 1 | [H2O] Na_2SO_4 | 1 | 1 | [Na2SO4] CrO_3 | 1 | 1 | [CrO3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-1) ([Na2CrO4])^(-1) [H2O] [Na2SO4] [CrO3] = ([H2O] [Na2SO4] [CrO3])/([H2SO4] [Na2CrO4])
Construct the equilibrium constant, K, expression for: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2CrO_4 | 1 | -1 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 CrO_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) Na_2CrO_4 | 1 | -1 | ([Na2CrO4])^(-1) H_2O | 1 | 1 | [H2O] Na_2SO_4 | 1 | 1 | [Na2SO4] CrO_3 | 1 | 1 | [CrO3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([Na2CrO4])^(-1) [H2O] [Na2SO4] [CrO3] = ([H2O] [Na2SO4] [CrO3])/([H2SO4] [Na2CrO4])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2CrO_4 | 1 | -1 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 CrO_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) Na_2CrO_4 | 1 | -1 | -(Δ[Na2CrO4])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) CrO_3 | 1 | 1 | (Δ[CrO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2SO4])/(Δt) = -(Δ[Na2CrO4])/(Δt) = (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = (Δ[CrO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + Na_2CrO_4 ⟶ H_2O + Na_2SO_4 + CrO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2CrO_4 | 1 | -1 H_2O | 1 | 1 Na_2SO_4 | 1 | 1 CrO_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) Na_2CrO_4 | 1 | -1 | -(Δ[Na2CrO4])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) CrO_3 | 1 | 1 | (Δ[CrO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -(Δ[Na2CrO4])/(Δt) = (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = (Δ[CrO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | sodium chromate | water | sodium sulfate | chromium trioxide formula | H_2SO_4 | Na_2CrO_4 | H_2O | Na_2SO_4 | CrO_3 Hill formula | H_2O_4S | CrNa_2O_4 | H_2O | Na_2O_4S | CrO_3 name | sulfuric acid | sodium chromate | water | sodium sulfate | chromium trioxide IUPAC name | sulfuric acid | disodium dioxido(dioxo)chromium | water | disodium sulfate | trioxochromium
| sulfuric acid | sodium chromate | water | sodium sulfate | chromium trioxide formula | H_2SO_4 | Na_2CrO_4 | H_2O | Na_2SO_4 | CrO_3 Hill formula | H_2O_4S | CrNa_2O_4 | H_2O | Na_2O_4S | CrO_3 name | sulfuric acid | sodium chromate | water | sodium sulfate | chromium trioxide IUPAC name | sulfuric acid | disodium dioxido(dioxo)chromium | water | disodium sulfate | trioxochromium

Substance properties

 | sulfuric acid | sodium chromate | water | sodium sulfate | chromium trioxide molar mass | 98.07 g/mol | 161.97 g/mol | 18.015 g/mol | 142.04 g/mol | 99.993 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 780 °C | 0 °C | 884 °C | 196 °C boiling point | 279.6 °C | | 99.9839 °C | 1429 °C |  density | 1.8305 g/cm^3 | 2.698 g/cm^3 | 1 g/cm^3 | 2.68 g/cm^3 |  solubility in water | very soluble | | | soluble | very soluble surface tension | 0.0735 N/m | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | odorless | | odorless | | odorless
| sulfuric acid | sodium chromate | water | sodium sulfate | chromium trioxide molar mass | 98.07 g/mol | 161.97 g/mol | 18.015 g/mol | 142.04 g/mol | 99.993 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 780 °C | 0 °C | 884 °C | 196 °C boiling point | 279.6 °C | | 99.9839 °C | 1429 °C | density | 1.8305 g/cm^3 | 2.698 g/cm^3 | 1 g/cm^3 | 2.68 g/cm^3 | solubility in water | very soluble | | | soluble | very soluble surface tension | 0.0735 N/m | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | | odorless | | odorless

Units