Search

HCl + K2Cr2O7 + Na2SO3 = H2O + KCl + Na2SO4 + CrCl2

Input interpretation

HCl hydrogen chloride + K_2Cr_2O_7 potassium dichromate + Na_2SO_3 sodium sulfite ⟶ H_2O water + KCl potassium chloride + Na_2SO_4 sodium sulfate + CrCl_2 chromous chloride
HCl hydrogen chloride + K_2Cr_2O_7 potassium dichromate + Na_2SO_3 sodium sulfite ⟶ H_2O water + KCl potassium chloride + Na_2SO_4 sodium sulfate + CrCl_2 chromous chloride

Balanced equation

Balance the chemical equation algebraically: HCl + K_2Cr_2O_7 + Na_2SO_3 ⟶ H_2O + KCl + Na_2SO_4 + CrCl_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HCl + c_2 K_2Cr_2O_7 + c_3 Na_2SO_3 ⟶ c_4 H_2O + c_5 KCl + c_6 Na_2SO_4 + c_7 CrCl_2 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, Cr, K, O, Na and S: Cl: | c_1 = c_5 + 2 c_7 H: | c_1 = 2 c_4 Cr: | 2 c_2 = c_7 K: | 2 c_2 = c_5 O: | 7 c_2 + 3 c_3 = c_4 + 4 c_6 Na: | 2 c_3 = 2 c_6 S: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 1 c_3 = 4 c_4 = 3 c_5 = 2 c_6 = 4 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 HCl + K_2Cr_2O_7 + 4 Na_2SO_3 ⟶ 3 H_2O + 2 KCl + 4 Na_2SO_4 + 2 CrCl_2
Balance the chemical equation algebraically: HCl + K_2Cr_2O_7 + Na_2SO_3 ⟶ H_2O + KCl + Na_2SO_4 + CrCl_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HCl + c_2 K_2Cr_2O_7 + c_3 Na_2SO_3 ⟶ c_4 H_2O + c_5 KCl + c_6 Na_2SO_4 + c_7 CrCl_2 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, Cr, K, O, Na and S: Cl: | c_1 = c_5 + 2 c_7 H: | c_1 = 2 c_4 Cr: | 2 c_2 = c_7 K: | 2 c_2 = c_5 O: | 7 c_2 + 3 c_3 = c_4 + 4 c_6 Na: | 2 c_3 = 2 c_6 S: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 1 c_3 = 4 c_4 = 3 c_5 = 2 c_6 = 4 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 HCl + K_2Cr_2O_7 + 4 Na_2SO_3 ⟶ 3 H_2O + 2 KCl + 4 Na_2SO_4 + 2 CrCl_2

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

hydrogen chloride + potassium dichromate + sodium sulfite ⟶ water + potassium chloride + sodium sulfate + chromous chloride
hydrogen chloride + potassium dichromate + sodium sulfite ⟶ water + potassium chloride + sodium sulfate + chromous chloride

Equilibrium constant

Construct the equilibrium constant, K, expression for: HCl + K_2Cr_2O_7 + Na_2SO_3 ⟶ H_2O + KCl + Na_2SO_4 + CrCl_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 HCl + K_2Cr_2O_7 + 4 Na_2SO_3 ⟶ 3 H_2O + 2 KCl + 4 Na_2SO_4 + 2 CrCl_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 4 | -4 H_2O | 3 | 3 KCl | 2 | 2 Na_2SO_4 | 4 | 4 CrCl_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HCl | 6 | -6 | ([HCl])^(-6) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) Na_2SO_3 | 4 | -4 | ([Na2SO3])^(-4) H_2O | 3 | 3 | ([H2O])^3 KCl | 2 | 2 | ([KCl])^2 Na_2SO_4 | 4 | 4 | ([Na2SO4])^4 CrCl_2 | 2 | 2 | ([CrCl2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HCl])^(-6) ([K2Cr2O7])^(-1) ([Na2SO3])^(-4) ([H2O])^3 ([KCl])^2 ([Na2SO4])^4 ([CrCl2])^2 = (([H2O])^3 ([KCl])^2 ([Na2SO4])^4 ([CrCl2])^2)/(([HCl])^6 [K2Cr2O7] ([Na2SO3])^4)
Construct the equilibrium constant, K, expression for: HCl + K_2Cr_2O_7 + Na_2SO_3 ⟶ H_2O + KCl + Na_2SO_4 + CrCl_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 HCl + K_2Cr_2O_7 + 4 Na_2SO_3 ⟶ 3 H_2O + 2 KCl + 4 Na_2SO_4 + 2 CrCl_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 4 | -4 H_2O | 3 | 3 KCl | 2 | 2 Na_2SO_4 | 4 | 4 CrCl_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HCl | 6 | -6 | ([HCl])^(-6) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) Na_2SO_3 | 4 | -4 | ([Na2SO3])^(-4) H_2O | 3 | 3 | ([H2O])^3 KCl | 2 | 2 | ([KCl])^2 Na_2SO_4 | 4 | 4 | ([Na2SO4])^4 CrCl_2 | 2 | 2 | ([CrCl2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HCl])^(-6) ([K2Cr2O7])^(-1) ([Na2SO3])^(-4) ([H2O])^3 ([KCl])^2 ([Na2SO4])^4 ([CrCl2])^2 = (([H2O])^3 ([KCl])^2 ([Na2SO4])^4 ([CrCl2])^2)/(([HCl])^6 [K2Cr2O7] ([Na2SO3])^4)

Rate of reaction

Construct the rate of reaction expression for: HCl + K_2Cr_2O_7 + Na_2SO_3 ⟶ H_2O + KCl + Na_2SO_4 + CrCl_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 HCl + K_2Cr_2O_7 + 4 Na_2SO_3 ⟶ 3 H_2O + 2 KCl + 4 Na_2SO_4 + 2 CrCl_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 4 | -4 H_2O | 3 | 3 KCl | 2 | 2 Na_2SO_4 | 4 | 4 CrCl_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HCl | 6 | -6 | -1/6 (Δ[HCl])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) Na_2SO_3 | 4 | -4 | -1/4 (Δ[Na2SO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) KCl | 2 | 2 | 1/2 (Δ[KCl])/(Δt) Na_2SO_4 | 4 | 4 | 1/4 (Δ[Na2SO4])/(Δt) CrCl_2 | 2 | 2 | 1/2 (Δ[CrCl2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[HCl])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/4 (Δ[Na2SO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/2 (Δ[KCl])/(Δt) = 1/4 (Δ[Na2SO4])/(Δt) = 1/2 (Δ[CrCl2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HCl + K_2Cr_2O_7 + Na_2SO_3 ⟶ H_2O + KCl + Na_2SO_4 + CrCl_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 HCl + K_2Cr_2O_7 + 4 Na_2SO_3 ⟶ 3 H_2O + 2 KCl + 4 Na_2SO_4 + 2 CrCl_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 6 | -6 K_2Cr_2O_7 | 1 | -1 Na_2SO_3 | 4 | -4 H_2O | 3 | 3 KCl | 2 | 2 Na_2SO_4 | 4 | 4 CrCl_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HCl | 6 | -6 | -1/6 (Δ[HCl])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) Na_2SO_3 | 4 | -4 | -1/4 (Δ[Na2SO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) KCl | 2 | 2 | 1/2 (Δ[KCl])/(Δt) Na_2SO_4 | 4 | 4 | 1/4 (Δ[Na2SO4])/(Δt) CrCl_2 | 2 | 2 | 1/2 (Δ[CrCl2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[HCl])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/4 (Δ[Na2SO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/2 (Δ[KCl])/(Δt) = 1/4 (Δ[Na2SO4])/(Δt) = 1/2 (Δ[CrCl2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | hydrogen chloride | potassium dichromate | sodium sulfite | water | potassium chloride | sodium sulfate | chromous chloride formula | HCl | K_2Cr_2O_7 | Na_2SO_3 | H_2O | KCl | Na_2SO_4 | CrCl_2 Hill formula | ClH | Cr_2K_2O_7 | Na_2O_3S | H_2O | ClK | Na_2O_4S | Cl_2Cr name | hydrogen chloride | potassium dichromate | sodium sulfite | water | potassium chloride | sodium sulfate | chromous chloride IUPAC name | hydrogen chloride | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | disodium sulfite | water | potassium chloride | disodium sulfate | dichlorochromium
| hydrogen chloride | potassium dichromate | sodium sulfite | water | potassium chloride | sodium sulfate | chromous chloride formula | HCl | K_2Cr_2O_7 | Na_2SO_3 | H_2O | KCl | Na_2SO_4 | CrCl_2 Hill formula | ClH | Cr_2K_2O_7 | Na_2O_3S | H_2O | ClK | Na_2O_4S | Cl_2Cr name | hydrogen chloride | potassium dichromate | sodium sulfite | water | potassium chloride | sodium sulfate | chromous chloride IUPAC name | hydrogen chloride | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | disodium sulfite | water | potassium chloride | disodium sulfate | dichlorochromium