Search

Al(NO3)3NO3 = O2 + NO2 + Al2O3

Input interpretation

Al(NO3)3NO3 ⟶ O_2 oxygen + NO_2 nitrogen dioxide + Al_2O_3 aluminum oxide
Al(NO3)3NO3 ⟶ O_2 oxygen + NO_2 nitrogen dioxide + Al_2O_3 aluminum oxide

Balanced equation

Balance the chemical equation algebraically: Al(NO3)3NO3 ⟶ O_2 + NO_2 + Al_2O_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Al(NO3)3NO3 ⟶ c_2 O_2 + c_3 NO_2 + c_4 Al_2O_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Al, N and O: Al: | c_1 = 2 c_4 N: | 4 c_1 = c_3 O: | 12 c_1 = 2 c_2 + 2 c_3 + 3 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 5/2 c_3 = 8 c_4 = 1 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 4 c_2 = 5 c_3 = 16 c_4 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 4 Al(NO3)3NO3 ⟶ 5 O_2 + 16 NO_2 + 2 Al_2O_3
Balance the chemical equation algebraically: Al(NO3)3NO3 ⟶ O_2 + NO_2 + Al_2O_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Al(NO3)3NO3 ⟶ c_2 O_2 + c_3 NO_2 + c_4 Al_2O_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Al, N and O: Al: | c_1 = 2 c_4 N: | 4 c_1 = c_3 O: | 12 c_1 = 2 c_2 + 2 c_3 + 3 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 5/2 c_3 = 8 c_4 = 1 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 4 c_2 = 5 c_3 = 16 c_4 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 4 Al(NO3)3NO3 ⟶ 5 O_2 + 16 NO_2 + 2 Al_2O_3

Structures

Al(NO3)3NO3 ⟶ + +
Al(NO3)3NO3 ⟶ + +

Names

Al(NO3)3NO3 ⟶ oxygen + nitrogen dioxide + aluminum oxide
Al(NO3)3NO3 ⟶ oxygen + nitrogen dioxide + aluminum oxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: Al(NO3)3NO3 ⟶ O_2 + NO_2 + Al_2O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 Al(NO3)3NO3 ⟶ 5 O_2 + 16 NO_2 + 2 Al_2O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al(NO3)3NO3 | 4 | -4 O_2 | 5 | 5 NO_2 | 16 | 16 Al_2O_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Al(NO3)3NO3 | 4 | -4 | ([Al(NO3)3NO3])^(-4) O_2 | 5 | 5 | ([O2])^5 NO_2 | 16 | 16 | ([NO2])^16 Al_2O_3 | 2 | 2 | ([Al2O3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Al(NO3)3NO3])^(-4) ([O2])^5 ([NO2])^16 ([Al2O3])^2 = (([O2])^5 ([NO2])^16 ([Al2O3])^2)/([Al(NO3)3NO3])^4
Construct the equilibrium constant, K, expression for: Al(NO3)3NO3 ⟶ O_2 + NO_2 + Al_2O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 Al(NO3)3NO3 ⟶ 5 O_2 + 16 NO_2 + 2 Al_2O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al(NO3)3NO3 | 4 | -4 O_2 | 5 | 5 NO_2 | 16 | 16 Al_2O_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Al(NO3)3NO3 | 4 | -4 | ([Al(NO3)3NO3])^(-4) O_2 | 5 | 5 | ([O2])^5 NO_2 | 16 | 16 | ([NO2])^16 Al_2O_3 | 2 | 2 | ([Al2O3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Al(NO3)3NO3])^(-4) ([O2])^5 ([NO2])^16 ([Al2O3])^2 = (([O2])^5 ([NO2])^16 ([Al2O3])^2)/([Al(NO3)3NO3])^4

Rate of reaction

Construct the rate of reaction expression for: Al(NO3)3NO3 ⟶ O_2 + NO_2 + Al_2O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 Al(NO3)3NO3 ⟶ 5 O_2 + 16 NO_2 + 2 Al_2O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al(NO3)3NO3 | 4 | -4 O_2 | 5 | 5 NO_2 | 16 | 16 Al_2O_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Al(NO3)3NO3 | 4 | -4 | -1/4 (Δ[Al(NO3)3NO3])/(Δt) O_2 | 5 | 5 | 1/5 (Δ[O2])/(Δt) NO_2 | 16 | 16 | 1/16 (Δ[NO2])/(Δt) Al_2O_3 | 2 | 2 | 1/2 (Δ[Al2O3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/4 (Δ[Al(NO3)3NO3])/(Δt) = 1/5 (Δ[O2])/(Δt) = 1/16 (Δ[NO2])/(Δt) = 1/2 (Δ[Al2O3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Al(NO3)3NO3 ⟶ O_2 + NO_2 + Al_2O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 Al(NO3)3NO3 ⟶ 5 O_2 + 16 NO_2 + 2 Al_2O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al(NO3)3NO3 | 4 | -4 O_2 | 5 | 5 NO_2 | 16 | 16 Al_2O_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Al(NO3)3NO3 | 4 | -4 | -1/4 (Δ[Al(NO3)3NO3])/(Δt) O_2 | 5 | 5 | 1/5 (Δ[O2])/(Δt) NO_2 | 16 | 16 | 1/16 (Δ[NO2])/(Δt) Al_2O_3 | 2 | 2 | 1/2 (Δ[Al2O3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/4 (Δ[Al(NO3)3NO3])/(Δt) = 1/5 (Δ[O2])/(Δt) = 1/16 (Δ[NO2])/(Δt) = 1/2 (Δ[Al2O3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | Al(NO3)3NO3 | oxygen | nitrogen dioxide | aluminum oxide formula | Al(NO3)3NO3 | O_2 | NO_2 | Al_2O_3 Hill formula | AlN4O12 | O_2 | NO_2 | Al_2O_3 name | | oxygen | nitrogen dioxide | aluminum oxide IUPAC name | | molecular oxygen | Nitrogen dioxide | dialuminum;oxygen(2-)
| Al(NO3)3NO3 | oxygen | nitrogen dioxide | aluminum oxide formula | Al(NO3)3NO3 | O_2 | NO_2 | Al_2O_3 Hill formula | AlN4O12 | O_2 | NO_2 | Al_2O_3 name | | oxygen | nitrogen dioxide | aluminum oxide IUPAC name | | molecular oxygen | Nitrogen dioxide | dialuminum;oxygen(2-)

Substance properties

 | Al(NO3)3NO3 | oxygen | nitrogen dioxide | aluminum oxide molar mass | 275 g/mol | 31.998 g/mol | 46.005 g/mol | 101.96 g/mol phase | | gas (at STP) | gas (at STP) | solid (at STP) melting point | | -218 °C | -11 °C | 2040 °C boiling point | | -183 °C | 21 °C |  density | | 0.001429 g/cm^3 (at 0 °C) | 0.00188 g/cm^3 (at 25 °C) |  solubility in water | | | reacts |  surface tension | | 0.01347 N/m | |  dynamic viscosity | | 2.055×10^-5 Pa s (at 25 °C) | 4.02×10^-4 Pa s (at 25 °C) |  odor | | odorless | | odorless
| Al(NO3)3NO3 | oxygen | nitrogen dioxide | aluminum oxide molar mass | 275 g/mol | 31.998 g/mol | 46.005 g/mol | 101.96 g/mol phase | | gas (at STP) | gas (at STP) | solid (at STP) melting point | | -218 °C | -11 °C | 2040 °C boiling point | | -183 °C | 21 °C | density | | 0.001429 g/cm^3 (at 0 °C) | 0.00188 g/cm^3 (at 25 °C) | solubility in water | | | reacts | surface tension | | 0.01347 N/m | | dynamic viscosity | | 2.055×10^-5 Pa s (at 25 °C) | 4.02×10^-4 Pa s (at 25 °C) | odor | | odorless | | odorless

Units