Search

H2SO4 + KMnO4 + HCOH = H2O + CO2 + K2SO4 + MnSO4

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + HCHO formaldehyde ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + HCHO formaldehyde ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + HCHO ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 HCHO ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 MnSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn and C: H: | 2 c_1 + 2 c_3 = 2 c_4 O: | 4 c_1 + 4 c_2 + c_3 = c_4 + 2 c_5 + 4 c_6 + 4 c_7 S: | c_1 = c_6 + c_7 K: | c_2 = 2 c_6 Mn: | c_2 = c_7 C: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_6 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 5/2 c_4 = 11/2 c_5 = 5/2 c_6 = 1 c_7 = 2 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 6 c_2 = 4 c_3 = 5 c_4 = 11 c_5 = 5 c_6 = 2 c_7 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 H_2SO_4 + 4 KMnO_4 + 5 HCHO ⟶ 11 H_2O + 5 CO_2 + 2 K_2SO_4 + 4 MnSO_4
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + HCHO ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 HCHO ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 MnSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn and C: H: | 2 c_1 + 2 c_3 = 2 c_4 O: | 4 c_1 + 4 c_2 + c_3 = c_4 + 2 c_5 + 4 c_6 + 4 c_7 S: | c_1 = c_6 + c_7 K: | c_2 = 2 c_6 Mn: | c_2 = c_7 C: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_6 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 5/2 c_4 = 11/2 c_5 = 5/2 c_6 = 1 c_7 = 2 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 6 c_2 = 4 c_3 = 5 c_4 = 11 c_5 = 5 c_6 = 2 c_7 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 H_2SO_4 + 4 KMnO_4 + 5 HCHO ⟶ 11 H_2O + 5 CO_2 + 2 K_2SO_4 + 4 MnSO_4

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + potassium permanganate + formaldehyde ⟶ water + carbon dioxide + potassium sulfate + manganese(II) sulfate
sulfuric acid + potassium permanganate + formaldehyde ⟶ water + carbon dioxide + potassium sulfate + manganese(II) sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + HCHO ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 KMnO_4 + 5 HCHO ⟶ 11 H_2O + 5 CO_2 + 2 K_2SO_4 + 4 MnSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 KMnO_4 | 4 | -4 HCHO | 5 | -5 H_2O | 11 | 11 CO_2 | 5 | 5 K_2SO_4 | 2 | 2 MnSO_4 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) KMnO_4 | 4 | -4 | ([KMnO4])^(-4) HCHO | 5 | -5 | ([HCHO])^(-5) H_2O | 11 | 11 | ([H2O])^11 CO_2 | 5 | 5 | ([CO2])^5 K_2SO_4 | 2 | 2 | ([K2SO4])^2 MnSO_4 | 4 | 4 | ([MnSO4])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-6) ([KMnO4])^(-4) ([HCHO])^(-5) ([H2O])^11 ([CO2])^5 ([K2SO4])^2 ([MnSO4])^4 = (([H2O])^11 ([CO2])^5 ([K2SO4])^2 ([MnSO4])^4)/(([H2SO4])^6 ([KMnO4])^4 ([HCHO])^5)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + HCHO ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 KMnO_4 + 5 HCHO ⟶ 11 H_2O + 5 CO_2 + 2 K_2SO_4 + 4 MnSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 KMnO_4 | 4 | -4 HCHO | 5 | -5 H_2O | 11 | 11 CO_2 | 5 | 5 K_2SO_4 | 2 | 2 MnSO_4 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) KMnO_4 | 4 | -4 | ([KMnO4])^(-4) HCHO | 5 | -5 | ([HCHO])^(-5) H_2O | 11 | 11 | ([H2O])^11 CO_2 | 5 | 5 | ([CO2])^5 K_2SO_4 | 2 | 2 | ([K2SO4])^2 MnSO_4 | 4 | 4 | ([MnSO4])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-6) ([KMnO4])^(-4) ([HCHO])^(-5) ([H2O])^11 ([CO2])^5 ([K2SO4])^2 ([MnSO4])^4 = (([H2O])^11 ([CO2])^5 ([K2SO4])^2 ([MnSO4])^4)/(([H2SO4])^6 ([KMnO4])^4 ([HCHO])^5)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + HCHO ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 KMnO_4 + 5 HCHO ⟶ 11 H_2O + 5 CO_2 + 2 K_2SO_4 + 4 MnSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 KMnO_4 | 4 | -4 HCHO | 5 | -5 H_2O | 11 | 11 CO_2 | 5 | 5 K_2SO_4 | 2 | 2 MnSO_4 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) KMnO_4 | 4 | -4 | -1/4 (Δ[KMnO4])/(Δt) HCHO | 5 | -5 | -1/5 (Δ[HCHO])/(Δt) H_2O | 11 | 11 | 1/11 (Δ[H2O])/(Δt) CO_2 | 5 | 5 | 1/5 (Δ[CO2])/(Δt) K_2SO_4 | 2 | 2 | 1/2 (Δ[K2SO4])/(Δt) MnSO_4 | 4 | 4 | 1/4 (Δ[MnSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/4 (Δ[KMnO4])/(Δt) = -1/5 (Δ[HCHO])/(Δt) = 1/11 (Δ[H2O])/(Δt) = 1/5 (Δ[CO2])/(Δt) = 1/2 (Δ[K2SO4])/(Δt) = 1/4 (Δ[MnSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + HCHO ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 KMnO_4 + 5 HCHO ⟶ 11 H_2O + 5 CO_2 + 2 K_2SO_4 + 4 MnSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 KMnO_4 | 4 | -4 HCHO | 5 | -5 H_2O | 11 | 11 CO_2 | 5 | 5 K_2SO_4 | 2 | 2 MnSO_4 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) KMnO_4 | 4 | -4 | -1/4 (Δ[KMnO4])/(Δt) HCHO | 5 | -5 | -1/5 (Δ[HCHO])/(Δt) H_2O | 11 | 11 | 1/11 (Δ[H2O])/(Δt) CO_2 | 5 | 5 | 1/5 (Δ[CO2])/(Δt) K_2SO_4 | 2 | 2 | 1/2 (Δ[K2SO4])/(Δt) MnSO_4 | 4 | 4 | 1/4 (Δ[MnSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/4 (Δ[KMnO4])/(Δt) = -1/5 (Δ[HCHO])/(Δt) = 1/11 (Δ[H2O])/(Δt) = 1/5 (Δ[CO2])/(Δt) = 1/2 (Δ[K2SO4])/(Δt) = 1/4 (Δ[MnSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | potassium sulfate | manganese(II) sulfate formula | H_2SO_4 | KMnO_4 | HCHO | H_2O | CO_2 | K_2SO_4 | MnSO_4 Hill formula | H_2O_4S | KMnO_4 | CH_2O | H_2O | CO_2 | K_2O_4S | MnSO_4 name | sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | potassium sulfate | manganese(II) sulfate IUPAC name | sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | dipotassium sulfate | manganese(+2) cation sulfate
| sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | potassium sulfate | manganese(II) sulfate formula | H_2SO_4 | KMnO_4 | HCHO | H_2O | CO_2 | K_2SO_4 | MnSO_4 Hill formula | H_2O_4S | KMnO_4 | CH_2O | H_2O | CO_2 | K_2O_4S | MnSO_4 name | sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | potassium sulfate | manganese(II) sulfate IUPAC name | sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | dipotassium sulfate | manganese(+2) cation sulfate

Substance properties

 | sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | potassium sulfate | manganese(II) sulfate molar mass | 98.07 g/mol | 158.03 g/mol | 30.026 g/mol | 18.015 g/mol | 44.009 g/mol | 174.25 g/mol | 150.99 g/mol phase | liquid (at STP) | solid (at STP) | gas (at STP) | liquid (at STP) | gas (at STP) | | solid (at STP) melting point | 10.371 °C | 240 °C | -92 °C | 0 °C | -56.56 °C (at triple point) | | 710 °C boiling point | 279.6 °C | | -19.1 °C | 99.9839 °C | -78.5 °C (at sublimation point) | |  density | 1.8305 g/cm^3 | 1 g/cm^3 | 1.09 g/cm^3 (at 25 °C) | 1 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | | 3.25 g/cm^3 solubility in water | very soluble | | miscible | | | soluble | soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | 1.491×10^-5 Pa s (at 25 °C) | |  odor | odorless | odorless | none-slight | odorless | odorless | |
| sulfuric acid | potassium permanganate | formaldehyde | water | carbon dioxide | potassium sulfate | manganese(II) sulfate molar mass | 98.07 g/mol | 158.03 g/mol | 30.026 g/mol | 18.015 g/mol | 44.009 g/mol | 174.25 g/mol | 150.99 g/mol phase | liquid (at STP) | solid (at STP) | gas (at STP) | liquid (at STP) | gas (at STP) | | solid (at STP) melting point | 10.371 °C | 240 °C | -92 °C | 0 °C | -56.56 °C (at triple point) | | 710 °C boiling point | 279.6 °C | | -19.1 °C | 99.9839 °C | -78.5 °C (at sublimation point) | | density | 1.8305 g/cm^3 | 1 g/cm^3 | 1.09 g/cm^3 (at 25 °C) | 1 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | | 3.25 g/cm^3 solubility in water | very soluble | | miscible | | | soluble | soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | 1.491×10^-5 Pa s (at 25 °C) | | odor | odorless | odorless | none-slight | odorless | odorless | |

Units