Search

HCl + [Xe2F3][AsF6] = Cl2 + HF + Xe + AsF5

Input interpretation

HCl hydrogen chloride + Xe_2F_3AsF_6 xenon fluoride hexafluoroarsenate ⟶ Cl_2 chlorine + HF hydrogen fluoride + Xe xenon + AsF_5 arsenic pentafluoride
HCl hydrogen chloride + Xe_2F_3AsF_6 xenon fluoride hexafluoroarsenate ⟶ Cl_2 chlorine + HF hydrogen fluoride + Xe xenon + AsF_5 arsenic pentafluoride

Balanced equation

Balance the chemical equation algebraically: HCl + Xe_2F_3AsF_6 ⟶ Cl_2 + HF + Xe + AsF_5 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HCl + c_2 Xe_2F_3AsF_6 ⟶ c_3 Cl_2 + c_4 HF + c_5 Xe + c_6 AsF_5 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, As, F and Xe: Cl: | c_1 = 2 c_3 H: | c_1 = c_4 As: | c_2 = c_6 F: | 9 c_2 = c_4 + 5 c_6 Xe: | 2 c_2 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 4 c_2 = 1 c_3 = 2 c_4 = 4 c_5 = 2 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 4 HCl + Xe_2F_3AsF_6 ⟶ 2 Cl_2 + 4 HF + 2 Xe + AsF_5
Balance the chemical equation algebraically: HCl + Xe_2F_3AsF_6 ⟶ Cl_2 + HF + Xe + AsF_5 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HCl + c_2 Xe_2F_3AsF_6 ⟶ c_3 Cl_2 + c_4 HF + c_5 Xe + c_6 AsF_5 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, As, F and Xe: Cl: | c_1 = 2 c_3 H: | c_1 = c_4 As: | c_2 = c_6 F: | 9 c_2 = c_4 + 5 c_6 Xe: | 2 c_2 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 4 c_2 = 1 c_3 = 2 c_4 = 4 c_5 = 2 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 4 HCl + Xe_2F_3AsF_6 ⟶ 2 Cl_2 + 4 HF + 2 Xe + AsF_5

Structures

 + Xe_2F_3AsF_6 ⟶ + + +
+ Xe_2F_3AsF_6 ⟶ + + +

Names

hydrogen chloride + xenon fluoride hexafluoroarsenate ⟶ chlorine + hydrogen fluoride + xenon + arsenic pentafluoride
hydrogen chloride + xenon fluoride hexafluoroarsenate ⟶ chlorine + hydrogen fluoride + xenon + arsenic pentafluoride

Equilibrium constant

Construct the equilibrium constant, K, expression for: HCl + Xe_2F_3AsF_6 ⟶ Cl_2 + HF + Xe + AsF_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 HCl + Xe_2F_3AsF_6 ⟶ 2 Cl_2 + 4 HF + 2 Xe + AsF_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 4 | -4 Xe_2F_3AsF_6 | 1 | -1 Cl_2 | 2 | 2 HF | 4 | 4 Xe | 2 | 2 AsF_5 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HCl | 4 | -4 | ([HCl])^(-4) Xe_2F_3AsF_6 | 1 | -1 | ([Xe2F3AsF6])^(-1) Cl_2 | 2 | 2 | ([Cl2])^2 HF | 4 | 4 | ([HF])^4 Xe | 2 | 2 | ([Xe])^2 AsF_5 | 1 | 1 | [AsF5] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HCl])^(-4) ([Xe2F3AsF6])^(-1) ([Cl2])^2 ([HF])^4 ([Xe])^2 [AsF5] = (([Cl2])^2 ([HF])^4 ([Xe])^2 [AsF5])/(([HCl])^4 [Xe2F3AsF6])
Construct the equilibrium constant, K, expression for: HCl + Xe_2F_3AsF_6 ⟶ Cl_2 + HF + Xe + AsF_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 HCl + Xe_2F_3AsF_6 ⟶ 2 Cl_2 + 4 HF + 2 Xe + AsF_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 4 | -4 Xe_2F_3AsF_6 | 1 | -1 Cl_2 | 2 | 2 HF | 4 | 4 Xe | 2 | 2 AsF_5 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HCl | 4 | -4 | ([HCl])^(-4) Xe_2F_3AsF_6 | 1 | -1 | ([Xe2F3AsF6])^(-1) Cl_2 | 2 | 2 | ([Cl2])^2 HF | 4 | 4 | ([HF])^4 Xe | 2 | 2 | ([Xe])^2 AsF_5 | 1 | 1 | [AsF5] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HCl])^(-4) ([Xe2F3AsF6])^(-1) ([Cl2])^2 ([HF])^4 ([Xe])^2 [AsF5] = (([Cl2])^2 ([HF])^4 ([Xe])^2 [AsF5])/(([HCl])^4 [Xe2F3AsF6])

Rate of reaction

Construct the rate of reaction expression for: HCl + Xe_2F_3AsF_6 ⟶ Cl_2 + HF + Xe + AsF_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 HCl + Xe_2F_3AsF_6 ⟶ 2 Cl_2 + 4 HF + 2 Xe + AsF_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 4 | -4 Xe_2F_3AsF_6 | 1 | -1 Cl_2 | 2 | 2 HF | 4 | 4 Xe | 2 | 2 AsF_5 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HCl | 4 | -4 | -1/4 (Δ[HCl])/(Δt) Xe_2F_3AsF_6 | 1 | -1 | -(Δ[Xe2F3AsF6])/(Δt) Cl_2 | 2 | 2 | 1/2 (Δ[Cl2])/(Δt) HF | 4 | 4 | 1/4 (Δ[HF])/(Δt) Xe | 2 | 2 | 1/2 (Δ[Xe])/(Δt) AsF_5 | 1 | 1 | (Δ[AsF5])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/4 (Δ[HCl])/(Δt) = -(Δ[Xe2F3AsF6])/(Δt) = 1/2 (Δ[Cl2])/(Δt) = 1/4 (Δ[HF])/(Δt) = 1/2 (Δ[Xe])/(Δt) = (Δ[AsF5])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HCl + Xe_2F_3AsF_6 ⟶ Cl_2 + HF + Xe + AsF_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 HCl + Xe_2F_3AsF_6 ⟶ 2 Cl_2 + 4 HF + 2 Xe + AsF_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HCl | 4 | -4 Xe_2F_3AsF_6 | 1 | -1 Cl_2 | 2 | 2 HF | 4 | 4 Xe | 2 | 2 AsF_5 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HCl | 4 | -4 | -1/4 (Δ[HCl])/(Δt) Xe_2F_3AsF_6 | 1 | -1 | -(Δ[Xe2F3AsF6])/(Δt) Cl_2 | 2 | 2 | 1/2 (Δ[Cl2])/(Δt) HF | 4 | 4 | 1/4 (Δ[HF])/(Δt) Xe | 2 | 2 | 1/2 (Δ[Xe])/(Δt) AsF_5 | 1 | 1 | (Δ[AsF5])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/4 (Δ[HCl])/(Δt) = -(Δ[Xe2F3AsF6])/(Δt) = 1/2 (Δ[Cl2])/(Δt) = 1/4 (Δ[HF])/(Δt) = 1/2 (Δ[Xe])/(Δt) = (Δ[AsF5])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | hydrogen chloride | xenon fluoride hexafluoroarsenate | chlorine | hydrogen fluoride | xenon | arsenic pentafluoride formula | HCl | Xe_2F_3AsF_6 | Cl_2 | HF | Xe | AsF_5 Hill formula | ClH | AsF_9Xe_2 | Cl_2 | FH | Xe | AsF_5 name | hydrogen chloride | xenon fluoride hexafluoroarsenate | chlorine | hydrogen fluoride | xenon | arsenic pentafluoride IUPAC name | hydrogen chloride | | molecular chlorine | hydrogen fluoride | xenon | pentafluoroarsorane
| hydrogen chloride | xenon fluoride hexafluoroarsenate | chlorine | hydrogen fluoride | xenon | arsenic pentafluoride formula | HCl | Xe_2F_3AsF_6 | Cl_2 | HF | Xe | AsF_5 Hill formula | ClH | AsF_9Xe_2 | Cl_2 | FH | Xe | AsF_5 name | hydrogen chloride | xenon fluoride hexafluoroarsenate | chlorine | hydrogen fluoride | xenon | arsenic pentafluoride IUPAC name | hydrogen chloride | | molecular chlorine | hydrogen fluoride | xenon | pentafluoroarsorane