Search

KOH + FeSO4 + KClO3 = H2O + K2SO4 + KCl + K2FeO4

Input interpretation

KOH (potassium hydroxide) + FeSO_4 (duretter) + KClO_3 (potassium chlorate) ⟶ H_2O (water) + K_2SO_4 (potassium sulfate) + KCl (potassium chloride) + K_2FeO_4 (potassium ferrate(VI))
KOH (potassium hydroxide) + FeSO_4 (duretter) + KClO_3 (potassium chlorate) ⟶ H_2O (water) + K_2SO_4 (potassium sulfate) + KCl (potassium chloride) + K_2FeO_4 (potassium ferrate(VI))

Balanced equation

Balance the chemical equation algebraically: KOH + FeSO_4 + KClO_3 ⟶ H_2O + K_2SO_4 + KCl + K_2FeO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KOH + c_2 FeSO_4 + c_3 KClO_3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 KCl + c_7 K_2FeO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, K, O, Fe, S and Cl: H: | c_1 = 2 c_4 K: | c_1 + c_3 = 2 c_5 + c_6 + c_7 O: | c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_5 + 2 c_7 Fe: | c_2 = c_7 S: | c_2 = c_5 Cl: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 18 c_2 = 6 c_3 = 1 c_4 = 9 c_5 = 6 c_6 = 1 c_7 = 6 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 18 KOH + 6 FeSO_4 + KClO_3 ⟶ 9 H_2O + 6 K_2SO_4 + KCl + 6 K_2FeO_4
Balance the chemical equation algebraically: KOH + FeSO_4 + KClO_3 ⟶ H_2O + K_2SO_4 + KCl + K_2FeO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KOH + c_2 FeSO_4 + c_3 KClO_3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 KCl + c_7 K_2FeO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, K, O, Fe, S and Cl: H: | c_1 = 2 c_4 K: | c_1 + c_3 = 2 c_5 + c_6 + c_7 O: | c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_5 + 2 c_7 Fe: | c_2 = c_7 S: | c_2 = c_5 Cl: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 18 c_2 = 6 c_3 = 1 c_4 = 9 c_5 = 6 c_6 = 1 c_7 = 6 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 18 KOH + 6 FeSO_4 + KClO_3 ⟶ 9 H_2O + 6 K_2SO_4 + KCl + 6 K_2FeO_4

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

potassium hydroxide + duretter + potassium chlorate ⟶ water + potassium sulfate + potassium chloride + potassium ferrate(VI)
potassium hydroxide + duretter + potassium chlorate ⟶ water + potassium sulfate + potassium chloride + potassium ferrate(VI)

Equilibrium constant

Construct the equilibrium constant, K, expression for: KOH + FeSO_4 + KClO_3 ⟶ H_2O + K_2SO_4 + KCl + K_2FeO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 18 KOH + 6 FeSO_4 + KClO_3 ⟶ 9 H_2O + 6 K_2SO_4 + KCl + 6 K_2FeO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 18 | -18 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 9 | 9 K_2SO_4 | 6 | 6 KCl | 1 | 1 K_2FeO_4 | 6 | 6 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KOH | 18 | -18 | ([KOH])^(-18) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) KClO_3 | 1 | -1 | ([KClO3])^(-1) H_2O | 9 | 9 | ([H2O])^9 K_2SO_4 | 6 | 6 | ([K2SO4])^6 KCl | 1 | 1 | [KCl] K_2FeO_4 | 6 | 6 | ([K2FeO4])^6 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([KOH])^(-18) ([FeSO4])^(-6) ([KClO3])^(-1) ([H2O])^9 ([K2SO4])^6 [KCl] ([K2FeO4])^6 = (([H2O])^9 ([K2SO4])^6 [KCl] ([K2FeO4])^6)/(([KOH])^18 ([FeSO4])^6 [KClO3])
Construct the equilibrium constant, K, expression for: KOH + FeSO_4 + KClO_3 ⟶ H_2O + K_2SO_4 + KCl + K_2FeO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 18 KOH + 6 FeSO_4 + KClO_3 ⟶ 9 H_2O + 6 K_2SO_4 + KCl + 6 K_2FeO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 18 | -18 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 9 | 9 K_2SO_4 | 6 | 6 KCl | 1 | 1 K_2FeO_4 | 6 | 6 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KOH | 18 | -18 | ([KOH])^(-18) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) KClO_3 | 1 | -1 | ([KClO3])^(-1) H_2O | 9 | 9 | ([H2O])^9 K_2SO_4 | 6 | 6 | ([K2SO4])^6 KCl | 1 | 1 | [KCl] K_2FeO_4 | 6 | 6 | ([K2FeO4])^6 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([KOH])^(-18) ([FeSO4])^(-6) ([KClO3])^(-1) ([H2O])^9 ([K2SO4])^6 [KCl] ([K2FeO4])^6 = (([H2O])^9 ([K2SO4])^6 [KCl] ([K2FeO4])^6)/(([KOH])^18 ([FeSO4])^6 [KClO3])

Rate of reaction

Construct the rate of reaction expression for: KOH + FeSO_4 + KClO_3 ⟶ H_2O + K_2SO_4 + KCl + K_2FeO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 18 KOH + 6 FeSO_4 + KClO_3 ⟶ 9 H_2O + 6 K_2SO_4 + KCl + 6 K_2FeO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 18 | -18 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 9 | 9 K_2SO_4 | 6 | 6 KCl | 1 | 1 K_2FeO_4 | 6 | 6 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KOH | 18 | -18 | -1/18 (Δ[KOH])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) KClO_3 | 1 | -1 | -(Δ[KClO3])/(Δt) H_2O | 9 | 9 | 1/9 (Δ[H2O])/(Δt) K_2SO_4 | 6 | 6 | 1/6 (Δ[K2SO4])/(Δt) KCl | 1 | 1 | (Δ[KCl])/(Δt) K_2FeO_4 | 6 | 6 | 1/6 (Δ[K2FeO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/18 (Δ[KOH])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[KClO3])/(Δt) = 1/9 (Δ[H2O])/(Δt) = 1/6 (Δ[K2SO4])/(Δt) = (Δ[KCl])/(Δt) = 1/6 (Δ[K2FeO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: KOH + FeSO_4 + KClO_3 ⟶ H_2O + K_2SO_4 + KCl + K_2FeO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 18 KOH + 6 FeSO_4 + KClO_3 ⟶ 9 H_2O + 6 K_2SO_4 + KCl + 6 K_2FeO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 18 | -18 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 9 | 9 K_2SO_4 | 6 | 6 KCl | 1 | 1 K_2FeO_4 | 6 | 6 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KOH | 18 | -18 | -1/18 (Δ[KOH])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) KClO_3 | 1 | -1 | -(Δ[KClO3])/(Δt) H_2O | 9 | 9 | 1/9 (Δ[H2O])/(Δt) K_2SO_4 | 6 | 6 | 1/6 (Δ[K2SO4])/(Δt) KCl | 1 | 1 | (Δ[KCl])/(Δt) K_2FeO_4 | 6 | 6 | 1/6 (Δ[K2FeO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/18 (Δ[KOH])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[KClO3])/(Δt) = 1/9 (Δ[H2O])/(Δt) = 1/6 (Δ[K2SO4])/(Δt) = (Δ[KCl])/(Δt) = 1/6 (Δ[K2FeO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | potassium hydroxide | duretter | potassium chlorate | water | potassium sulfate | potassium chloride | potassium ferrate(VI) formula | KOH | FeSO_4 | KClO_3 | H_2O | K_2SO_4 | KCl | K_2FeO_4 Hill formula | HKO | FeO_4S | ClKO_3 | H_2O | K_2O_4S | ClK | FeK_2O_4 name | potassium hydroxide | duretter | potassium chlorate | water | potassium sulfate | potassium chloride | potassium ferrate(VI) IUPAC name | potassium hydroxide | iron(+2) cation sulfate | potassium chlorate | water | dipotassium sulfate | potassium chloride |
| potassium hydroxide | duretter | potassium chlorate | water | potassium sulfate | potassium chloride | potassium ferrate(VI) formula | KOH | FeSO_4 | KClO_3 | H_2O | K_2SO_4 | KCl | K_2FeO_4 Hill formula | HKO | FeO_4S | ClKO_3 | H_2O | K_2O_4S | ClK | FeK_2O_4 name | potassium hydroxide | duretter | potassium chlorate | water | potassium sulfate | potassium chloride | potassium ferrate(VI) IUPAC name | potassium hydroxide | iron(+2) cation sulfate | potassium chlorate | water | dipotassium sulfate | potassium chloride |

Substance properties

 | potassium hydroxide | duretter | potassium chlorate | water | potassium sulfate | potassium chloride | potassium ferrate(VI) molar mass | 56.105 g/mol | 151.9 g/mol | 122.5 g/mol | 18.015 g/mol | 174.25 g/mol | 74.55 g/mol | 126.94 g/mol phase | solid (at STP) | | solid (at STP) | liquid (at STP) | | solid (at STP) | solid (at STP) melting point | 406 °C | | 356 °C | 0 °C | | 770 °C | 400 °C boiling point | 1327 °C | | | 99.9839 °C | | 1420 °C |  density | 2.044 g/cm^3 | 2.841 g/cm^3 | 2.34 g/cm^3 | 1 g/cm^3 | | 1.98 g/cm^3 |  solubility in water | soluble | | soluble | | soluble | soluble |  surface tension | | | | 0.0728 N/m | | |  dynamic viscosity | 0.001 Pa s (at 550 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | | | | odorless | | odorless |
| potassium hydroxide | duretter | potassium chlorate | water | potassium sulfate | potassium chloride | potassium ferrate(VI) molar mass | 56.105 g/mol | 151.9 g/mol | 122.5 g/mol | 18.015 g/mol | 174.25 g/mol | 74.55 g/mol | 126.94 g/mol phase | solid (at STP) | | solid (at STP) | liquid (at STP) | | solid (at STP) | solid (at STP) melting point | 406 °C | | 356 °C | 0 °C | | 770 °C | 400 °C boiling point | 1327 °C | | | 99.9839 °C | | 1420 °C | density | 2.044 g/cm^3 | 2.841 g/cm^3 | 2.34 g/cm^3 | 1 g/cm^3 | | 1.98 g/cm^3 | solubility in water | soluble | | soluble | | soluble | soluble | surface tension | | | | 0.0728 N/m | | | dynamic viscosity | 0.001 Pa s (at 550 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | | | | odorless | | odorless |

Units