Search

H2SO4 + K2Cr2O7 + SnCl2 = H2O + K2SO4 + CrCl3 + Sn(SO4)2

Input interpretation

H_2SO_4 (sulfuric acid) + K_2Cr_2O_7 (potassium dichromate) + SnCl_2 (stannous chloride) ⟶ H_2O (water) + K_2SO_4 (potassium sulfate) + CrCl_3 (chromic chloride) + Sn(SO4)2
H_2SO_4 (sulfuric acid) + K_2Cr_2O_7 (potassium dichromate) + SnCl_2 (stannous chloride) ⟶ H_2O (water) + K_2SO_4 (potassium sulfate) + CrCl_3 (chromic chloride) + Sn(SO4)2

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + SnCl_2 ⟶ H_2O + K_2SO_4 + CrCl_3 + Sn(SO4)2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 SnCl_2 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 CrCl_3 + c_7 Sn(SO4)2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K, Cl and Sn: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_2 = c_4 + 4 c_5 + 8 c_7 S: | c_1 = c_5 + 2 c_7 Cr: | 2 c_2 = c_6 K: | 2 c_2 = 2 c_5 Cl: | 2 c_3 = 3 c_6 Sn: | c_3 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 7 c_2 = 1 c_3 = 3 c_4 = 7 c_5 = 1 c_6 = 2 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 7 H_2SO_4 + K_2Cr_2O_7 + 3 SnCl_2 ⟶ 7 H_2O + K_2SO_4 + 2 CrCl_3 + 3 Sn(SO4)2
Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + SnCl_2 ⟶ H_2O + K_2SO_4 + CrCl_3 + Sn(SO4)2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 SnCl_2 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 CrCl_3 + c_7 Sn(SO4)2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K, Cl and Sn: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_2 = c_4 + 4 c_5 + 8 c_7 S: | c_1 = c_5 + 2 c_7 Cr: | 2 c_2 = c_6 K: | 2 c_2 = 2 c_5 Cl: | 2 c_3 = 3 c_6 Sn: | c_3 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 7 c_2 = 1 c_3 = 3 c_4 = 7 c_5 = 1 c_6 = 2 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 7 H_2SO_4 + K_2Cr_2O_7 + 3 SnCl_2 ⟶ 7 H_2O + K_2SO_4 + 2 CrCl_3 + 3 Sn(SO4)2

Structures

 + + ⟶ + + + Sn(SO4)2
+ + ⟶ + + + Sn(SO4)2

Names

sulfuric acid + potassium dichromate + stannous chloride ⟶ water + potassium sulfate + chromic chloride + Sn(SO4)2
sulfuric acid + potassium dichromate + stannous chloride ⟶ water + potassium sulfate + chromic chloride + Sn(SO4)2

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + SnCl_2 ⟶ H_2O + K_2SO_4 + CrCl_3 + Sn(SO4)2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 7 H_2SO_4 + K_2Cr_2O_7 + 3 SnCl_2 ⟶ 7 H_2O + K_2SO_4 + 2 CrCl_3 + 3 Sn(SO4)2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 7 | -7 K_2Cr_2O_7 | 1 | -1 SnCl_2 | 3 | -3 H_2O | 7 | 7 K_2SO_4 | 1 | 1 CrCl_3 | 2 | 2 Sn(SO4)2 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 7 | -7 | ([H2SO4])^(-7) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) SnCl_2 | 3 | -3 | ([SnCl2])^(-3) H_2O | 7 | 7 | ([H2O])^7 K_2SO_4 | 1 | 1 | [K2SO4] CrCl_3 | 2 | 2 | ([CrCl3])^2 Sn(SO4)2 | 3 | 3 | ([Sn(SO4)2])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-7) ([K2Cr2O7])^(-1) ([SnCl2])^(-3) ([H2O])^7 [K2SO4] ([CrCl3])^2 ([Sn(SO4)2])^3 = (([H2O])^7 [K2SO4] ([CrCl3])^2 ([Sn(SO4)2])^3)/(([H2SO4])^7 [K2Cr2O7] ([SnCl2])^3)
Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + SnCl_2 ⟶ H_2O + K_2SO_4 + CrCl_3 + Sn(SO4)2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 7 H_2SO_4 + K_2Cr_2O_7 + 3 SnCl_2 ⟶ 7 H_2O + K_2SO_4 + 2 CrCl_3 + 3 Sn(SO4)2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 7 | -7 K_2Cr_2O_7 | 1 | -1 SnCl_2 | 3 | -3 H_2O | 7 | 7 K_2SO_4 | 1 | 1 CrCl_3 | 2 | 2 Sn(SO4)2 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 7 | -7 | ([H2SO4])^(-7) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) SnCl_2 | 3 | -3 | ([SnCl2])^(-3) H_2O | 7 | 7 | ([H2O])^7 K_2SO_4 | 1 | 1 | [K2SO4] CrCl_3 | 2 | 2 | ([CrCl3])^2 Sn(SO4)2 | 3 | 3 | ([Sn(SO4)2])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-7) ([K2Cr2O7])^(-1) ([SnCl2])^(-3) ([H2O])^7 [K2SO4] ([CrCl3])^2 ([Sn(SO4)2])^3 = (([H2O])^7 [K2SO4] ([CrCl3])^2 ([Sn(SO4)2])^3)/(([H2SO4])^7 [K2Cr2O7] ([SnCl2])^3)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + SnCl_2 ⟶ H_2O + K_2SO_4 + CrCl_3 + Sn(SO4)2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 7 H_2SO_4 + K_2Cr_2O_7 + 3 SnCl_2 ⟶ 7 H_2O + K_2SO_4 + 2 CrCl_3 + 3 Sn(SO4)2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 7 | -7 K_2Cr_2O_7 | 1 | -1 SnCl_2 | 3 | -3 H_2O | 7 | 7 K_2SO_4 | 1 | 1 CrCl_3 | 2 | 2 Sn(SO4)2 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 7 | -7 | -1/7 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) SnCl_2 | 3 | -3 | -1/3 (Δ[SnCl2])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) CrCl_3 | 2 | 2 | 1/2 (Δ[CrCl3])/(Δt) Sn(SO4)2 | 3 | 3 | 1/3 (Δ[Sn(SO4)2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/7 (Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/3 (Δ[SnCl2])/(Δt) = 1/7 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[CrCl3])/(Δt) = 1/3 (Δ[Sn(SO4)2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + SnCl_2 ⟶ H_2O + K_2SO_4 + CrCl_3 + Sn(SO4)2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 7 H_2SO_4 + K_2Cr_2O_7 + 3 SnCl_2 ⟶ 7 H_2O + K_2SO_4 + 2 CrCl_3 + 3 Sn(SO4)2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 7 | -7 K_2Cr_2O_7 | 1 | -1 SnCl_2 | 3 | -3 H_2O | 7 | 7 K_2SO_4 | 1 | 1 CrCl_3 | 2 | 2 Sn(SO4)2 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 7 | -7 | -1/7 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) SnCl_2 | 3 | -3 | -1/3 (Δ[SnCl2])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) CrCl_3 | 2 | 2 | 1/2 (Δ[CrCl3])/(Δt) Sn(SO4)2 | 3 | 3 | 1/3 (Δ[Sn(SO4)2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/7 (Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/3 (Δ[SnCl2])/(Δt) = 1/7 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[CrCl3])/(Δt) = 1/3 (Δ[Sn(SO4)2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium dichromate | stannous chloride | water | potassium sulfate | chromic chloride | Sn(SO4)2 formula | H_2SO_4 | K_2Cr_2O_7 | SnCl_2 | H_2O | K_2SO_4 | CrCl_3 | Sn(SO4)2 Hill formula | H_2O_4S | Cr_2K_2O_7 | Cl_2Sn | H_2O | K_2O_4S | Cl_3Cr | O8S2Sn name | sulfuric acid | potassium dichromate | stannous chloride | water | potassium sulfate | chromic chloride |  IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | dichlorotin | water | dipotassium sulfate | trichlorochromium |
| sulfuric acid | potassium dichromate | stannous chloride | water | potassium sulfate | chromic chloride | Sn(SO4)2 formula | H_2SO_4 | K_2Cr_2O_7 | SnCl_2 | H_2O | K_2SO_4 | CrCl_3 | Sn(SO4)2 Hill formula | H_2O_4S | Cr_2K_2O_7 | Cl_2Sn | H_2O | K_2O_4S | Cl_3Cr | O8S2Sn name | sulfuric acid | potassium dichromate | stannous chloride | water | potassium sulfate | chromic chloride | IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | dichlorotin | water | dipotassium sulfate | trichlorochromium |

Substance properties

 | sulfuric acid | potassium dichromate | stannous chloride | water | potassium sulfate | chromic chloride | Sn(SO4)2 molar mass | 98.07 g/mol | 294.18 g/mol | 189.6 g/mol | 18.015 g/mol | 174.25 g/mol | 158.3 g/mol | 310.82 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) |  melting point | 10.371 °C | 398 °C | 246 °C | 0 °C | | 1152 °C |  boiling point | 279.6 °C | | 652 °C | 99.9839 °C | | |  density | 1.8305 g/cm^3 | 2.67 g/cm^3 | 3.354 g/cm^3 | 1 g/cm^3 | | 2.87 g/cm^3 |  solubility in water | very soluble | | | | soluble | slightly soluble |  surface tension | 0.0735 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | 7 Pa s (at 25 °C) | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | odorless | odorless | odorless | odorless | | |
| sulfuric acid | potassium dichromate | stannous chloride | water | potassium sulfate | chromic chloride | Sn(SO4)2 molar mass | 98.07 g/mol | 294.18 g/mol | 189.6 g/mol | 18.015 g/mol | 174.25 g/mol | 158.3 g/mol | 310.82 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) | melting point | 10.371 °C | 398 °C | 246 °C | 0 °C | | 1152 °C | boiling point | 279.6 °C | | 652 °C | 99.9839 °C | | | density | 1.8305 g/cm^3 | 2.67 g/cm^3 | 3.354 g/cm^3 | 1 g/cm^3 | | 2.87 g/cm^3 | solubility in water | very soluble | | | | soluble | slightly soluble | surface tension | 0.0735 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | 7 Pa s (at 25 °C) | 8.9×10^-4 Pa s (at 25 °C) | | | odor | odorless | odorless | odorless | odorless | | |

Units