Search

name of N-heptane

Input interpretation

N-heptane
N-heptane

Chemical names and formulas

formula | CH_3(CH_2)_5CH_3 Hill formula | C_7H_16 name | N-heptane IUPAC name | heptane alternate names | dipropylmethane | gettysolve-c | heptane | heptyl hydride mass fractions | C (carbon) 8.39×10^1% | H (hydrogen) 1.61×10^1%
formula | CH_3(CH_2)_5CH_3 Hill formula | C_7H_16 name | N-heptane IUPAC name | heptane alternate names | dipropylmethane | gettysolve-c | heptane | heptyl hydride mass fractions | C (carbon) 8.39×10^1% | H (hydrogen) 1.61×10^1%

Lewis structure

Draw the Lewis structure of N-heptane. Start by drawing the overall structure of the molecule:  Count the total valence electrons of the carbon (n_C, val = 4) and hydrogen (n_H, val = 1) atoms: 7 n_C, val + 16 n_H, val = 44 Calculate the number of electrons needed to completely fill the valence shells for carbon (n_C, full = 8) and hydrogen (n_H, full = 2): 7 n_C, full + 16 n_H, full = 88 Subtracting these two numbers shows that 88 - 44 = 44 bonding electrons are needed. Each bond has two electrons, so the above diagram has all the necessary bonds. There are 22 bonds and hence 44 bonding electrons in the diagram. Lastly, fill in the remaining unbonded electrons on each atom. In total, there remain 44 - 44 = 0 electrons left to draw and the diagram is complete: Answer: |   |
Draw the Lewis structure of N-heptane. Start by drawing the overall structure of the molecule: Count the total valence electrons of the carbon (n_C, val = 4) and hydrogen (n_H, val = 1) atoms: 7 n_C, val + 16 n_H, val = 44 Calculate the number of electrons needed to completely fill the valence shells for carbon (n_C, full = 8) and hydrogen (n_H, full = 2): 7 n_C, full + 16 n_H, full = 88 Subtracting these two numbers shows that 88 - 44 = 44 bonding electrons are needed. Each bond has two electrons, so the above diagram has all the necessary bonds. There are 22 bonds and hence 44 bonding electrons in the diagram. Lastly, fill in the remaining unbonded electrons on each atom. In total, there remain 44 - 44 = 0 electrons left to draw and the diagram is complete: Answer: | |

3D structure

3D structure
3D structure

Basic properties

molar mass | 1.0021×10^2 g/mol phase | liquid (at STP) melting point | -9.1×10^1 °C boiling point | 9.8×10^1 °C density | 6.84×10^-1 g/cm^3 dielectric constant | 1.925×10^0
molar mass | 1.0021×10^2 g/mol phase | liquid (at STP) melting point | -9.1×10^1 °C boiling point | 9.8×10^1 °C density | 6.84×10^-1 g/cm^3 dielectric constant | 1.925×10^0

Liquid properties (at STP)

density | 6.84×10^-1 g/cm^3 vapor pressure | 3.999×10^1 mmHg dynamic viscosity | 3.87×10^-4 Pa s (at 2.5×10^1 °C) surface tension | 2.021×10^-2 N/m refractive index | 1.387×10^0 UV cutoff wavelength | 1.97×10^2 nm
density | 6.84×10^-1 g/cm^3 vapor pressure | 3.999×10^1 mmHg dynamic viscosity | 3.87×10^-4 Pa s (at 2.5×10^1 °C) surface tension | 2.021×10^-2 N/m refractive index | 1.387×10^0 UV cutoff wavelength | 1.97×10^2 nm

Units

Thermodynamic properties

specific heat capacity c_p | liquid | 2.242×10^0 J/(g K) molar heat capacity c_p | liquid | 2.247×10^2 J/(mol K) specific heat of formation Δ_fH° | gas | -1.872×10^0 kJ/g  | liquid | -1.759×10^-1 kJ/g molar heat of formation Δ_fH° | gas | -1.876×10^2 kJ/mol  | liquid | -1.763×10^1 kJ/mol molar heat of vaporization | 3.6×10^1 kJ/mol |  specific heat of vaporization | 3.59×10^-1 kJ/g |  molar heat of combustion | 4.82×10^3 kJ/mol |  specific heat of combustion | 4.81×10^1 kJ/g |  molar heat of fusion | 1.403×10^1 kJ/mol |  specific heat of fusion | 1.4×10^-1 kJ/g |  thermal conductivity | 1.237×10^-1 W/(m K) |  critical temperature | 5.4×10^2 K |  critical pressure | 2.81×10^0 MPa |  (at STP)
specific heat capacity c_p | liquid | 2.242×10^0 J/(g K) molar heat capacity c_p | liquid | 2.247×10^2 J/(mol K) specific heat of formation Δ_fH° | gas | -1.872×10^0 kJ/g | liquid | -1.759×10^-1 kJ/g molar heat of formation Δ_fH° | gas | -1.876×10^2 kJ/mol | liquid | -1.763×10^1 kJ/mol molar heat of vaporization | 3.6×10^1 kJ/mol | specific heat of vaporization | 3.59×10^-1 kJ/g | molar heat of combustion | 4.82×10^3 kJ/mol | specific heat of combustion | 4.81×10^1 kJ/g | molar heat of fusion | 1.403×10^1 kJ/mol | specific heat of fusion | 1.4×10^-1 kJ/g | thermal conductivity | 1.237×10^-1 W/(m K) | critical temperature | 5.4×10^2 K | critical pressure | 2.81×10^0 MPa | (at STP)

Phase diagram

Phase diagram
Phase diagram

Units

Chemical identifiers

CAS number | 142-82-5 Beilstein number | 1730763 PubChem CID number | 8900 PubChem SID number | 24849307 SMILES identifier | CCCCCCC InChI identifier | InChI=1/C7H16/c1-3-5-7-6-4-2/h3-7H2, 1-2H3 RTECS number | MI7700000 MDL number | MFCD00009544
CAS number | 142-82-5 Beilstein number | 1730763 PubChem CID number | 8900 PubChem SID number | 24849307 SMILES identifier | CCCCCCC InChI identifier | InChI=1/C7H16/c1-3-5-7-6-4-2/h3-7H2, 1-2H3 RTECS number | MI7700000 MDL number | MFCD00009544

NFPA label

NFPA label
NFPA label
NFPA health rating | 1 NFPA fire rating | 3 NFPA reactivity rating | 0
NFPA health rating | 1 NFPA fire rating | 3 NFPA reactivity rating | 0

Safety properties

flash point | -1.111×10^0 °C autoignition point | 2.04×10^2 °C lower explosive limit | 1.05×10^0% (concentration in air) upper explosive limit | 6.7×10^0% (concentration in air)
flash point | -1.111×10^0 °C autoignition point | 2.04×10^2 °C lower explosive limit | 1.05×10^0% (concentration in air) upper explosive limit | 6.7×10^0% (concentration in air)
DOT hazard class | 3 DOT numbers | 1206
DOT hazard class | 3 DOT numbers | 1206