Search

H2SO4 + MnO2 + NaNO2 = H2O + MnSO4 + NaNO3

Input interpretation

H_2SO_4 sulfuric acid + MnO_2 manganese dioxide + NaNO_2 sodium nitrite ⟶ H_2O water + MnSO_4 manganese(II) sulfate + NaNO_3 sodium nitrate
H_2SO_4 sulfuric acid + MnO_2 manganese dioxide + NaNO_2 sodium nitrite ⟶ H_2O water + MnSO_4 manganese(II) sulfate + NaNO_3 sodium nitrate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 MnO_2 + c_3 NaNO_2 ⟶ c_4 H_2O + c_5 MnSO_4 + c_6 NaNO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Mn, N and Na: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 2 c_2 + 2 c_3 = c_4 + 4 c_5 + 3 c_6 S: | c_1 = c_5 Mn: | c_2 = c_5 N: | c_3 = c_6 Na: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3
Balance the chemical equation algebraically: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 MnO_2 + c_3 NaNO_2 ⟶ c_4 H_2O + c_5 MnSO_4 + c_6 NaNO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Mn, N and Na: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 2 c_2 + 2 c_3 = c_4 + 4 c_5 + 3 c_6 S: | c_1 = c_5 Mn: | c_2 = c_5 N: | c_3 = c_6 Na: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

sulfuric acid + manganese dioxide + sodium nitrite ⟶ water + manganese(II) sulfate + sodium nitrate
sulfuric acid + manganese dioxide + sodium nitrite ⟶ water + manganese(II) sulfate + sodium nitrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 MnO_2 | 1 | -1 NaNO_2 | 1 | -1 H_2O | 1 | 1 MnSO_4 | 1 | 1 NaNO_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) MnO_2 | 1 | -1 | ([MnO2])^(-1) NaNO_2 | 1 | -1 | ([NaNO2])^(-1) H_2O | 1 | 1 | [H2O] MnSO_4 | 1 | 1 | [MnSO4] NaNO_3 | 1 | 1 | [NaNO3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-1) ([MnO2])^(-1) ([NaNO2])^(-1) [H2O] [MnSO4] [NaNO3] = ([H2O] [MnSO4] [NaNO3])/([H2SO4] [MnO2] [NaNO2])
Construct the equilibrium constant, K, expression for: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 MnO_2 | 1 | -1 NaNO_2 | 1 | -1 H_2O | 1 | 1 MnSO_4 | 1 | 1 NaNO_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) MnO_2 | 1 | -1 | ([MnO2])^(-1) NaNO_2 | 1 | -1 | ([NaNO2])^(-1) H_2O | 1 | 1 | [H2O] MnSO_4 | 1 | 1 | [MnSO4] NaNO_3 | 1 | 1 | [NaNO3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([MnO2])^(-1) ([NaNO2])^(-1) [H2O] [MnSO4] [NaNO3] = ([H2O] [MnSO4] [NaNO3])/([H2SO4] [MnO2] [NaNO2])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 MnO_2 | 1 | -1 NaNO_2 | 1 | -1 H_2O | 1 | 1 MnSO_4 | 1 | 1 NaNO_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) MnO_2 | 1 | -1 | -(Δ[MnO2])/(Δt) NaNO_2 | 1 | -1 | -(Δ[NaNO2])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) MnSO_4 | 1 | 1 | (Δ[MnSO4])/(Δt) NaNO_3 | 1 | 1 | (Δ[NaNO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2SO4])/(Δt) = -(Δ[MnO2])/(Δt) = -(Δ[NaNO2])/(Δt) = (Δ[H2O])/(Δt) = (Δ[MnSO4])/(Δt) = (Δ[NaNO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + MnO_2 + NaNO_2 ⟶ H_2O + MnSO_4 + NaNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 MnO_2 | 1 | -1 NaNO_2 | 1 | -1 H_2O | 1 | 1 MnSO_4 | 1 | 1 NaNO_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) MnO_2 | 1 | -1 | -(Δ[MnO2])/(Δt) NaNO_2 | 1 | -1 | -(Δ[NaNO2])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) MnSO_4 | 1 | 1 | (Δ[MnSO4])/(Δt) NaNO_3 | 1 | 1 | (Δ[NaNO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -(Δ[MnO2])/(Δt) = -(Δ[NaNO2])/(Δt) = (Δ[H2O])/(Δt) = (Δ[MnSO4])/(Δt) = (Δ[NaNO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | manganese dioxide | sodium nitrite | water | manganese(II) sulfate | sodium nitrate formula | H_2SO_4 | MnO_2 | NaNO_2 | H_2O | MnSO_4 | NaNO_3 Hill formula | H_2O_4S | MnO_2 | NNaO_2 | H_2O | MnSO_4 | NNaO_3 name | sulfuric acid | manganese dioxide | sodium nitrite | water | manganese(II) sulfate | sodium nitrate IUPAC name | sulfuric acid | dioxomanganese | sodium nitrite | water | manganese(+2) cation sulfate | sodium nitrate
| sulfuric acid | manganese dioxide | sodium nitrite | water | manganese(II) sulfate | sodium nitrate formula | H_2SO_4 | MnO_2 | NaNO_2 | H_2O | MnSO_4 | NaNO_3 Hill formula | H_2O_4S | MnO_2 | NNaO_2 | H_2O | MnSO_4 | NNaO_3 name | sulfuric acid | manganese dioxide | sodium nitrite | water | manganese(II) sulfate | sodium nitrate IUPAC name | sulfuric acid | dioxomanganese | sodium nitrite | water | manganese(+2) cation sulfate | sodium nitrate

Substance properties

 | sulfuric acid | manganese dioxide | sodium nitrite | water | manganese(II) sulfate | sodium nitrate molar mass | 98.07 g/mol | 86.936 g/mol | 68.995 g/mol | 18.015 g/mol | 150.99 g/mol | 84.994 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 535 °C | 271 °C | 0 °C | 710 °C | 306 °C boiling point | 279.6 °C | | | 99.9839 °C | |  density | 1.8305 g/cm^3 | 5.03 g/cm^3 | 2.168 g/cm^3 | 1 g/cm^3 | 3.25 g/cm^3 | 2.26 g/cm^3 solubility in water | very soluble | insoluble | | | soluble | soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | 0.003 Pa s (at 250 °C) odor | odorless | | | odorless | |
| sulfuric acid | manganese dioxide | sodium nitrite | water | manganese(II) sulfate | sodium nitrate molar mass | 98.07 g/mol | 86.936 g/mol | 68.995 g/mol | 18.015 g/mol | 150.99 g/mol | 84.994 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 535 °C | 271 °C | 0 °C | 710 °C | 306 °C boiling point | 279.6 °C | | | 99.9839 °C | | density | 1.8305 g/cm^3 | 5.03 g/cm^3 | 2.168 g/cm^3 | 1 g/cm^3 | 3.25 g/cm^3 | 2.26 g/cm^3 solubility in water | very soluble | insoluble | | | soluble | soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | 0.003 Pa s (at 250 °C) odor | odorless | | | odorless | |

Units