Search

H2O + Cr2(SO4)3 + K2CO3 = CO2 + K2SO4 + Cr(OH)3

Input interpretation

H_2O water + Cr_2(SO_4)_3 chromium sulfate + K_2CO_3 pearl ash ⟶ CO_2 carbon dioxide + K_2SO_4 potassium sulfate + Cr(OH)3
H_2O water + Cr_2(SO_4)_3 chromium sulfate + K_2CO_3 pearl ash ⟶ CO_2 carbon dioxide + K_2SO_4 potassium sulfate + Cr(OH)3

Balanced equation

Balance the chemical equation algebraically: H_2O + Cr_2(SO_4)_3 + K_2CO_3 ⟶ CO_2 + K_2SO_4 + Cr(OH)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 Cr_2(SO_4)_3 + c_3 K_2CO_3 ⟶ c_4 CO_2 + c_5 K_2SO_4 + c_6 Cr(OH)3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Cr, S, C and K: H: | 2 c_1 = 3 c_6 O: | c_1 + 12 c_2 + 3 c_3 = 2 c_4 + 4 c_5 + 3 c_6 Cr: | 2 c_2 = c_6 S: | 3 c_2 = c_5 C: | c_3 = c_4 K: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 1 c_3 = 3 c_4 = 3 c_5 = 3 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 H_2O + Cr_2(SO_4)_3 + 3 K_2CO_3 ⟶ 3 CO_2 + 3 K_2SO_4 + 2 Cr(OH)3
Balance the chemical equation algebraically: H_2O + Cr_2(SO_4)_3 + K_2CO_3 ⟶ CO_2 + K_2SO_4 + Cr(OH)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 Cr_2(SO_4)_3 + c_3 K_2CO_3 ⟶ c_4 CO_2 + c_5 K_2SO_4 + c_6 Cr(OH)3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Cr, S, C and K: H: | 2 c_1 = 3 c_6 O: | c_1 + 12 c_2 + 3 c_3 = 2 c_4 + 4 c_5 + 3 c_6 Cr: | 2 c_2 = c_6 S: | 3 c_2 = c_5 C: | c_3 = c_4 K: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 1 c_3 = 3 c_4 = 3 c_5 = 3 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2O + Cr_2(SO_4)_3 + 3 K_2CO_3 ⟶ 3 CO_2 + 3 K_2SO_4 + 2 Cr(OH)3

Structures

 + + ⟶ + + Cr(OH)3
+ + ⟶ + + Cr(OH)3

Names

water + chromium sulfate + pearl ash ⟶ carbon dioxide + potassium sulfate + Cr(OH)3
water + chromium sulfate + pearl ash ⟶ carbon dioxide + potassium sulfate + Cr(OH)3

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + Cr_2(SO_4)_3 + K_2CO_3 ⟶ CO_2 + K_2SO_4 + Cr(OH)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2O + Cr_2(SO_4)_3 + 3 K_2CO_3 ⟶ 3 CO_2 + 3 K_2SO_4 + 2 Cr(OH)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 Cr_2(SO_4)_3 | 1 | -1 K_2CO_3 | 3 | -3 CO_2 | 3 | 3 K_2SO_4 | 3 | 3 Cr(OH)3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 3 | -3 | ([H2O])^(-3) Cr_2(SO_4)_3 | 1 | -1 | ([Cr2(SO4)3])^(-1) K_2CO_3 | 3 | -3 | ([K2CO3])^(-3) CO_2 | 3 | 3 | ([CO2])^3 K_2SO_4 | 3 | 3 | ([K2SO4])^3 Cr(OH)3 | 2 | 2 | ([Cr(OH)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-3) ([Cr2(SO4)3])^(-1) ([K2CO3])^(-3) ([CO2])^3 ([K2SO4])^3 ([Cr(OH)3])^2 = (([CO2])^3 ([K2SO4])^3 ([Cr(OH)3])^2)/(([H2O])^3 [Cr2(SO4)3] ([K2CO3])^3)
Construct the equilibrium constant, K, expression for: H_2O + Cr_2(SO_4)_3 + K_2CO_3 ⟶ CO_2 + K_2SO_4 + Cr(OH)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2O + Cr_2(SO_4)_3 + 3 K_2CO_3 ⟶ 3 CO_2 + 3 K_2SO_4 + 2 Cr(OH)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 Cr_2(SO_4)_3 | 1 | -1 K_2CO_3 | 3 | -3 CO_2 | 3 | 3 K_2SO_4 | 3 | 3 Cr(OH)3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 3 | -3 | ([H2O])^(-3) Cr_2(SO_4)_3 | 1 | -1 | ([Cr2(SO4)3])^(-1) K_2CO_3 | 3 | -3 | ([K2CO3])^(-3) CO_2 | 3 | 3 | ([CO2])^3 K_2SO_4 | 3 | 3 | ([K2SO4])^3 Cr(OH)3 | 2 | 2 | ([Cr(OH)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-3) ([Cr2(SO4)3])^(-1) ([K2CO3])^(-3) ([CO2])^3 ([K2SO4])^3 ([Cr(OH)3])^2 = (([CO2])^3 ([K2SO4])^3 ([Cr(OH)3])^2)/(([H2O])^3 [Cr2(SO4)3] ([K2CO3])^3)

Rate of reaction

Construct the rate of reaction expression for: H_2O + Cr_2(SO_4)_3 + K_2CO_3 ⟶ CO_2 + K_2SO_4 + Cr(OH)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2O + Cr_2(SO_4)_3 + 3 K_2CO_3 ⟶ 3 CO_2 + 3 K_2SO_4 + 2 Cr(OH)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 Cr_2(SO_4)_3 | 1 | -1 K_2CO_3 | 3 | -3 CO_2 | 3 | 3 K_2SO_4 | 3 | 3 Cr(OH)3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 3 | -3 | -1/3 (Δ[H2O])/(Δt) Cr_2(SO_4)_3 | 1 | -1 | -(Δ[Cr2(SO4)3])/(Δt) K_2CO_3 | 3 | -3 | -1/3 (Δ[K2CO3])/(Δt) CO_2 | 3 | 3 | 1/3 (Δ[CO2])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) Cr(OH)3 | 2 | 2 | 1/2 (Δ[Cr(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[H2O])/(Δt) = -(Δ[Cr2(SO4)3])/(Δt) = -1/3 (Δ[K2CO3])/(Δt) = 1/3 (Δ[CO2])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/2 (Δ[Cr(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + Cr_2(SO_4)_3 + K_2CO_3 ⟶ CO_2 + K_2SO_4 + Cr(OH)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2O + Cr_2(SO_4)_3 + 3 K_2CO_3 ⟶ 3 CO_2 + 3 K_2SO_4 + 2 Cr(OH)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 Cr_2(SO_4)_3 | 1 | -1 K_2CO_3 | 3 | -3 CO_2 | 3 | 3 K_2SO_4 | 3 | 3 Cr(OH)3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 3 | -3 | -1/3 (Δ[H2O])/(Δt) Cr_2(SO_4)_3 | 1 | -1 | -(Δ[Cr2(SO4)3])/(Δt) K_2CO_3 | 3 | -3 | -1/3 (Δ[K2CO3])/(Δt) CO_2 | 3 | 3 | 1/3 (Δ[CO2])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) Cr(OH)3 | 2 | 2 | 1/2 (Δ[Cr(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2O])/(Δt) = -(Δ[Cr2(SO4)3])/(Δt) = -1/3 (Δ[K2CO3])/(Δt) = 1/3 (Δ[CO2])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/2 (Δ[Cr(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | chromium sulfate | pearl ash | carbon dioxide | potassium sulfate | Cr(OH)3 formula | H_2O | Cr_2(SO_4)_3 | K_2CO_3 | CO_2 | K_2SO_4 | Cr(OH)3 Hill formula | H_2O | Cr_2O_12S_3 | CK_2O_3 | CO_2 | K_2O_4S | H3CrO3 name | water | chromium sulfate | pearl ash | carbon dioxide | potassium sulfate |  IUPAC name | water | chromium(+3) cation trisulfate | dipotassium carbonate | carbon dioxide | dipotassium sulfate |
| water | chromium sulfate | pearl ash | carbon dioxide | potassium sulfate | Cr(OH)3 formula | H_2O | Cr_2(SO_4)_3 | K_2CO_3 | CO_2 | K_2SO_4 | Cr(OH)3 Hill formula | H_2O | Cr_2O_12S_3 | CK_2O_3 | CO_2 | K_2O_4S | H3CrO3 name | water | chromium sulfate | pearl ash | carbon dioxide | potassium sulfate | IUPAC name | water | chromium(+3) cation trisulfate | dipotassium carbonate | carbon dioxide | dipotassium sulfate |

Substance properties

 | water | chromium sulfate | pearl ash | carbon dioxide | potassium sulfate | Cr(OH)3 molar mass | 18.015 g/mol | 392.2 g/mol | 138.2 g/mol | 44.009 g/mol | 174.25 g/mol | 103.02 g/mol phase | liquid (at STP) | liquid (at STP) | solid (at STP) | gas (at STP) | |  melting point | 0 °C | | 891 °C | -56.56 °C (at triple point) | |  boiling point | 99.9839 °C | 330 °C | | -78.5 °C (at sublimation point) | |  density | 1 g/cm^3 | 1.84 g/cm^3 | 2.43 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | |  solubility in water | | | soluble | | soluble |  surface tension | 0.0728 N/m | | | | |  dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | 1.491×10^-5 Pa s (at 25 °C) | |  odor | odorless | odorless | | odorless | |
| water | chromium sulfate | pearl ash | carbon dioxide | potassium sulfate | Cr(OH)3 molar mass | 18.015 g/mol | 392.2 g/mol | 138.2 g/mol | 44.009 g/mol | 174.25 g/mol | 103.02 g/mol phase | liquid (at STP) | liquid (at STP) | solid (at STP) | gas (at STP) | | melting point | 0 °C | | 891 °C | -56.56 °C (at triple point) | | boiling point | 99.9839 °C | 330 °C | | -78.5 °C (at sublimation point) | | density | 1 g/cm^3 | 1.84 g/cm^3 | 2.43 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | | solubility in water | | | soluble | | soluble | surface tension | 0.0728 N/m | | | | | dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | 1.491×10^-5 Pa s (at 25 °C) | | odor | odorless | odorless | | odorless | |

Units