Search

molar mass of lead arsenite

Input interpretation

lead arsenite | molar mass
lead arsenite | molar mass

Result

Find the molar mass, M, for lead arsenite: M = sum _iN_im_i Plan: • Write the chemical formula and gather atomic masses from the periodic table. • Determine values for N_i and m_i using these items. • Finally, compute the mass. Write the chemical formula: As_2O_4Pb Use the chemical formula to count the number of atoms, N_i, for each element:  | N_i  As (arsenic) | 2  O (oxygen) | 4  Pb (lead) | 1 Look up the atomic mass, m_i, in g·mol^(-1) for each element in the periodic table:  | N_i | m_i/g·mol^(-1)  As (arsenic) | 2 | 74.921595  O (oxygen) | 4 | 15.999  Pb (lead) | 1 | 207.2 Multiply N_i by m_i to compute the mass for each element. Then sum those values to compute the molar mass, M: Answer: |   | | N_i | m_i/g·mol^(-1) | mass/g·mol^(-1)  As (arsenic) | 2 | 74.921595 | 2 × 74.921595 = 149.843190  O (oxygen) | 4 | 15.999 | 4 × 15.999 = 63.996  Pb (lead) | 1 | 207.2 | 1 × 207.2 = 207.2  M = 149.843190 g/mol + 63.996 g/mol + 207.2 g/mol = 421.0 g/mol
Find the molar mass, M, for lead arsenite: M = sum _iN_im_i Plan: • Write the chemical formula and gather atomic masses from the periodic table. • Determine values for N_i and m_i using these items. • Finally, compute the mass. Write the chemical formula: As_2O_4Pb Use the chemical formula to count the number of atoms, N_i, for each element: | N_i As (arsenic) | 2 O (oxygen) | 4 Pb (lead) | 1 Look up the atomic mass, m_i, in g·mol^(-1) for each element in the periodic table: | N_i | m_i/g·mol^(-1) As (arsenic) | 2 | 74.921595 O (oxygen) | 4 | 15.999 Pb (lead) | 1 | 207.2 Multiply N_i by m_i to compute the mass for each element. Then sum those values to compute the molar mass, M: Answer: | | | N_i | m_i/g·mol^(-1) | mass/g·mol^(-1) As (arsenic) | 2 | 74.921595 | 2 × 74.921595 = 149.843190 O (oxygen) | 4 | 15.999 | 4 × 15.999 = 63.996 Pb (lead) | 1 | 207.2 | 1 × 207.2 = 207.2 M = 149.843190 g/mol + 63.996 g/mol + 207.2 g/mol = 421.0 g/mol

Unit conversion

0.421 kg/mol (kilograms per mole)
0.421 kg/mol (kilograms per mole)

Comparisons

 ≈ 0.58 × molar mass of fullerene ( ≈ 721 g/mol )
≈ 0.58 × molar mass of fullerene ( ≈ 721 g/mol )
 ≈ 2.2 × molar mass of caffeine ( ≈ 194 g/mol )
≈ 2.2 × molar mass of caffeine ( ≈ 194 g/mol )
 ≈ 7.2 × molar mass of sodium chloride ( ≈ 58 g/mol )
≈ 7.2 × molar mass of sodium chloride ( ≈ 58 g/mol )

Corresponding quantities

Mass of a molecule m from m = M/N_A:  | 7×10^-22 grams  | 7×10^-25 kg (kilograms)  | 421 u (unified atomic mass units)  | 421 Da (daltons)
Mass of a molecule m from m = M/N_A: | 7×10^-22 grams | 7×10^-25 kg (kilograms) | 421 u (unified atomic mass units) | 421 Da (daltons)
Relative molecular mass M_r from M_r = M_u/M:  | 421
Relative molecular mass M_r from M_r = M_u/M: | 421