Search

H2SO4 + MnSO4 + KBiO3 = H2O + K2SO4 + KMnO4 + Bi2(SO4)3

Input interpretation

H_2SO_4 sulfuric acid + MnSO_4 manganese(II) sulfate + KBiO3 ⟶ H_2O water + K_2SO_4 potassium sulfate + KMnO_4 potassium permanganate + Bi_2(SO_4)_3 bismuth sulfate
H_2SO_4 sulfuric acid + MnSO_4 manganese(II) sulfate + KBiO3 ⟶ H_2O water + K_2SO_4 potassium sulfate + KMnO_4 potassium permanganate + Bi_2(SO_4)_3 bismuth sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + MnSO_4 + KBiO3 ⟶ H_2O + K_2SO_4 + KMnO_4 + Bi_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 MnSO_4 + c_3 KBiO3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 KMnO_4 + c_7 Bi_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Mn, K and Bi: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_5 + 4 c_6 + 12 c_7 S: | c_1 + c_2 = c_5 + 3 c_7 Mn: | c_2 = c_6 K: | c_3 = 2 c_5 + c_6 Bi: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 14/3 c_2 = 4/3 c_3 = 10/3 c_4 = 14/3 c_5 = 1 c_6 = 4/3 c_7 = 5/3 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 14 c_2 = 4 c_3 = 10 c_4 = 14 c_5 = 3 c_6 = 4 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 14 H_2SO_4 + 4 MnSO_4 + 10 KBiO3 ⟶ 14 H_2O + 3 K_2SO_4 + 4 KMnO_4 + 5 Bi_2(SO_4)_3
Balance the chemical equation algebraically: H_2SO_4 + MnSO_4 + KBiO3 ⟶ H_2O + K_2SO_4 + KMnO_4 + Bi_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 MnSO_4 + c_3 KBiO3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 KMnO_4 + c_7 Bi_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Mn, K and Bi: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_5 + 4 c_6 + 12 c_7 S: | c_1 + c_2 = c_5 + 3 c_7 Mn: | c_2 = c_6 K: | c_3 = 2 c_5 + c_6 Bi: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 14/3 c_2 = 4/3 c_3 = 10/3 c_4 = 14/3 c_5 = 1 c_6 = 4/3 c_7 = 5/3 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 14 c_2 = 4 c_3 = 10 c_4 = 14 c_5 = 3 c_6 = 4 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 14 H_2SO_4 + 4 MnSO_4 + 10 KBiO3 ⟶ 14 H_2O + 3 K_2SO_4 + 4 KMnO_4 + 5 Bi_2(SO_4)_3

Structures

 + + KBiO3 ⟶ + + +
+ + KBiO3 ⟶ + + +

Names

sulfuric acid + manganese(II) sulfate + KBiO3 ⟶ water + potassium sulfate + potassium permanganate + bismuth sulfate
sulfuric acid + manganese(II) sulfate + KBiO3 ⟶ water + potassium sulfate + potassium permanganate + bismuth sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + MnSO_4 + KBiO3 ⟶ H_2O + K_2SO_4 + KMnO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 14 H_2SO_4 + 4 MnSO_4 + 10 KBiO3 ⟶ 14 H_2O + 3 K_2SO_4 + 4 KMnO_4 + 5 Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 14 | -14 MnSO_4 | 4 | -4 KBiO3 | 10 | -10 H_2O | 14 | 14 K_2SO_4 | 3 | 3 KMnO_4 | 4 | 4 Bi_2(SO_4)_3 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 14 | -14 | ([H2SO4])^(-14) MnSO_4 | 4 | -4 | ([MnSO4])^(-4) KBiO3 | 10 | -10 | ([KBiO3])^(-10) H_2O | 14 | 14 | ([H2O])^14 K_2SO_4 | 3 | 3 | ([K2SO4])^3 KMnO_4 | 4 | 4 | ([KMnO4])^4 Bi_2(SO_4)_3 | 5 | 5 | ([Bi2(SO4)3])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-14) ([MnSO4])^(-4) ([KBiO3])^(-10) ([H2O])^14 ([K2SO4])^3 ([KMnO4])^4 ([Bi2(SO4)3])^5 = (([H2O])^14 ([K2SO4])^3 ([KMnO4])^4 ([Bi2(SO4)3])^5)/(([H2SO4])^14 ([MnSO4])^4 ([KBiO3])^10)
Construct the equilibrium constant, K, expression for: H_2SO_4 + MnSO_4 + KBiO3 ⟶ H_2O + K_2SO_4 + KMnO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 14 H_2SO_4 + 4 MnSO_4 + 10 KBiO3 ⟶ 14 H_2O + 3 K_2SO_4 + 4 KMnO_4 + 5 Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 14 | -14 MnSO_4 | 4 | -4 KBiO3 | 10 | -10 H_2O | 14 | 14 K_2SO_4 | 3 | 3 KMnO_4 | 4 | 4 Bi_2(SO_4)_3 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 14 | -14 | ([H2SO4])^(-14) MnSO_4 | 4 | -4 | ([MnSO4])^(-4) KBiO3 | 10 | -10 | ([KBiO3])^(-10) H_2O | 14 | 14 | ([H2O])^14 K_2SO_4 | 3 | 3 | ([K2SO4])^3 KMnO_4 | 4 | 4 | ([KMnO4])^4 Bi_2(SO_4)_3 | 5 | 5 | ([Bi2(SO4)3])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-14) ([MnSO4])^(-4) ([KBiO3])^(-10) ([H2O])^14 ([K2SO4])^3 ([KMnO4])^4 ([Bi2(SO4)3])^5 = (([H2O])^14 ([K2SO4])^3 ([KMnO4])^4 ([Bi2(SO4)3])^5)/(([H2SO4])^14 ([MnSO4])^4 ([KBiO3])^10)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + MnSO_4 + KBiO3 ⟶ H_2O + K_2SO_4 + KMnO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 14 H_2SO_4 + 4 MnSO_4 + 10 KBiO3 ⟶ 14 H_2O + 3 K_2SO_4 + 4 KMnO_4 + 5 Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 14 | -14 MnSO_4 | 4 | -4 KBiO3 | 10 | -10 H_2O | 14 | 14 K_2SO_4 | 3 | 3 KMnO_4 | 4 | 4 Bi_2(SO_4)_3 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 14 | -14 | -1/14 (Δ[H2SO4])/(Δt) MnSO_4 | 4 | -4 | -1/4 (Δ[MnSO4])/(Δt) KBiO3 | 10 | -10 | -1/10 (Δ[KBiO3])/(Δt) H_2O | 14 | 14 | 1/14 (Δ[H2O])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) KMnO_4 | 4 | 4 | 1/4 (Δ[KMnO4])/(Δt) Bi_2(SO_4)_3 | 5 | 5 | 1/5 (Δ[Bi2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/14 (Δ[H2SO4])/(Δt) = -1/4 (Δ[MnSO4])/(Δt) = -1/10 (Δ[KBiO3])/(Δt) = 1/14 (Δ[H2O])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/4 (Δ[KMnO4])/(Δt) = 1/5 (Δ[Bi2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + MnSO_4 + KBiO3 ⟶ H_2O + K_2SO_4 + KMnO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 14 H_2SO_4 + 4 MnSO_4 + 10 KBiO3 ⟶ 14 H_2O + 3 K_2SO_4 + 4 KMnO_4 + 5 Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 14 | -14 MnSO_4 | 4 | -4 KBiO3 | 10 | -10 H_2O | 14 | 14 K_2SO_4 | 3 | 3 KMnO_4 | 4 | 4 Bi_2(SO_4)_3 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 14 | -14 | -1/14 (Δ[H2SO4])/(Δt) MnSO_4 | 4 | -4 | -1/4 (Δ[MnSO4])/(Δt) KBiO3 | 10 | -10 | -1/10 (Δ[KBiO3])/(Δt) H_2O | 14 | 14 | 1/14 (Δ[H2O])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) KMnO_4 | 4 | 4 | 1/4 (Δ[KMnO4])/(Δt) Bi_2(SO_4)_3 | 5 | 5 | 1/5 (Δ[Bi2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/14 (Δ[H2SO4])/(Δt) = -1/4 (Δ[MnSO4])/(Δt) = -1/10 (Δ[KBiO3])/(Δt) = 1/14 (Δ[H2O])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/4 (Δ[KMnO4])/(Δt) = 1/5 (Δ[Bi2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | manganese(II) sulfate | KBiO3 | water | potassium sulfate | potassium permanganate | bismuth sulfate formula | H_2SO_4 | MnSO_4 | KBiO3 | H_2O | K_2SO_4 | KMnO_4 | Bi_2(SO_4)_3 Hill formula | H_2O_4S | MnSO_4 | BiKO3 | H_2O | K_2O_4S | KMnO_4 | Bi_2O_12S_3 name | sulfuric acid | manganese(II) sulfate | | water | potassium sulfate | potassium permanganate | bismuth sulfate IUPAC name | sulfuric acid | manganese(+2) cation sulfate | | water | dipotassium sulfate | potassium permanganate | dibismuth trisulfate
| sulfuric acid | manganese(II) sulfate | KBiO3 | water | potassium sulfate | potassium permanganate | bismuth sulfate formula | H_2SO_4 | MnSO_4 | KBiO3 | H_2O | K_2SO_4 | KMnO_4 | Bi_2(SO_4)_3 Hill formula | H_2O_4S | MnSO_4 | BiKO3 | H_2O | K_2O_4S | KMnO_4 | Bi_2O_12S_3 name | sulfuric acid | manganese(II) sulfate | | water | potassium sulfate | potassium permanganate | bismuth sulfate IUPAC name | sulfuric acid | manganese(+2) cation sulfate | | water | dipotassium sulfate | potassium permanganate | dibismuth trisulfate

Substance properties

 | sulfuric acid | manganese(II) sulfate | KBiO3 | water | potassium sulfate | potassium permanganate | bismuth sulfate molar mass | 98.07 g/mol | 150.99 g/mol | 296.076 g/mol | 18.015 g/mol | 174.25 g/mol | 158.03 g/mol | 706.1 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | solid (at STP) |  melting point | 10.371 °C | 710 °C | | 0 °C | | 240 °C |  boiling point | 279.6 °C | | | 99.9839 °C | | |  density | 1.8305 g/cm^3 | 3.25 g/cm^3 | | 1 g/cm^3 | | 1 g/cm^3 |  solubility in water | very soluble | soluble | | | soluble | |  surface tension | 0.0735 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | odorless | | | odorless | | odorless |
| sulfuric acid | manganese(II) sulfate | KBiO3 | water | potassium sulfate | potassium permanganate | bismuth sulfate molar mass | 98.07 g/mol | 150.99 g/mol | 296.076 g/mol | 18.015 g/mol | 174.25 g/mol | 158.03 g/mol | 706.1 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | solid (at STP) | melting point | 10.371 °C | 710 °C | | 0 °C | | 240 °C | boiling point | 279.6 °C | | | 99.9839 °C | | | density | 1.8305 g/cm^3 | 3.25 g/cm^3 | | 1 g/cm^3 | | 1 g/cm^3 | solubility in water | very soluble | soluble | | | soluble | | surface tension | 0.0735 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | odorless | | | odorless | | odorless |

Units