Search

KClO3 + Na2CO3 + Cr2O3 = CO2 + KCl + Na2CrO4

Input interpretation

KClO_3 potassium chlorate + Na_2CO_3 soda ash + Cr_2O_3 chromium(III) oxide ⟶ CO_2 carbon dioxide + KCl potassium chloride + Na_2CrO_4 sodium chromate
KClO_3 potassium chlorate + Na_2CO_3 soda ash + Cr_2O_3 chromium(III) oxide ⟶ CO_2 carbon dioxide + KCl potassium chloride + Na_2CrO_4 sodium chromate

Balanced equation

Balance the chemical equation algebraically: KClO_3 + Na_2CO_3 + Cr_2O_3 ⟶ CO_2 + KCl + Na_2CrO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KClO_3 + c_2 Na_2CO_3 + c_3 Cr_2O_3 ⟶ c_4 CO_2 + c_5 KCl + c_6 Na_2CrO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, K, O, C, Na and Cr: Cl: | c_1 = c_5 K: | c_1 = c_5 O: | 3 c_1 + 3 c_2 + 3 c_3 = 2 c_4 + 4 c_6 C: | c_2 = c_4 Na: | 2 c_2 = 2 c_6 Cr: | 2 c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | KClO_3 + 2 Na_2CO_3 + Cr_2O_3 ⟶ 2 CO_2 + KCl + 2 Na_2CrO_4
Balance the chemical equation algebraically: KClO_3 + Na_2CO_3 + Cr_2O_3 ⟶ CO_2 + KCl + Na_2CrO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KClO_3 + c_2 Na_2CO_3 + c_3 Cr_2O_3 ⟶ c_4 CO_2 + c_5 KCl + c_6 Na_2CrO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, K, O, C, Na and Cr: Cl: | c_1 = c_5 K: | c_1 = c_5 O: | 3 c_1 + 3 c_2 + 3 c_3 = 2 c_4 + 4 c_6 C: | c_2 = c_4 Na: | 2 c_2 = 2 c_6 Cr: | 2 c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | KClO_3 + 2 Na_2CO_3 + Cr_2O_3 ⟶ 2 CO_2 + KCl + 2 Na_2CrO_4

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

potassium chlorate + soda ash + chromium(III) oxide ⟶ carbon dioxide + potassium chloride + sodium chromate
potassium chlorate + soda ash + chromium(III) oxide ⟶ carbon dioxide + potassium chloride + sodium chromate

Equilibrium constant

Construct the equilibrium constant, K, expression for: KClO_3 + Na_2CO_3 + Cr_2O_3 ⟶ CO_2 + KCl + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: KClO_3 + 2 Na_2CO_3 + Cr_2O_3 ⟶ 2 CO_2 + KCl + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KClO_3 | 1 | -1 Na_2CO_3 | 2 | -2 Cr_2O_3 | 1 | -1 CO_2 | 2 | 2 KCl | 1 | 1 Na_2CrO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KClO_3 | 1 | -1 | ([KClO3])^(-1) Na_2CO_3 | 2 | -2 | ([Na2CO3])^(-2) Cr_2O_3 | 1 | -1 | ([Cr2O3])^(-1) CO_2 | 2 | 2 | ([CO2])^2 KCl | 1 | 1 | [KCl] Na_2CrO_4 | 2 | 2 | ([Na2CrO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([KClO3])^(-1) ([Na2CO3])^(-2) ([Cr2O3])^(-1) ([CO2])^2 [KCl] ([Na2CrO4])^2 = (([CO2])^2 [KCl] ([Na2CrO4])^2)/([KClO3] ([Na2CO3])^2 [Cr2O3])
Construct the equilibrium constant, K, expression for: KClO_3 + Na_2CO_3 + Cr_2O_3 ⟶ CO_2 + KCl + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: KClO_3 + 2 Na_2CO_3 + Cr_2O_3 ⟶ 2 CO_2 + KCl + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KClO_3 | 1 | -1 Na_2CO_3 | 2 | -2 Cr_2O_3 | 1 | -1 CO_2 | 2 | 2 KCl | 1 | 1 Na_2CrO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KClO_3 | 1 | -1 | ([KClO3])^(-1) Na_2CO_3 | 2 | -2 | ([Na2CO3])^(-2) Cr_2O_3 | 1 | -1 | ([Cr2O3])^(-1) CO_2 | 2 | 2 | ([CO2])^2 KCl | 1 | 1 | [KCl] Na_2CrO_4 | 2 | 2 | ([Na2CrO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([KClO3])^(-1) ([Na2CO3])^(-2) ([Cr2O3])^(-1) ([CO2])^2 [KCl] ([Na2CrO4])^2 = (([CO2])^2 [KCl] ([Na2CrO4])^2)/([KClO3] ([Na2CO3])^2 [Cr2O3])

Rate of reaction

Construct the rate of reaction expression for: KClO_3 + Na_2CO_3 + Cr_2O_3 ⟶ CO_2 + KCl + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: KClO_3 + 2 Na_2CO_3 + Cr_2O_3 ⟶ 2 CO_2 + KCl + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KClO_3 | 1 | -1 Na_2CO_3 | 2 | -2 Cr_2O_3 | 1 | -1 CO_2 | 2 | 2 KCl | 1 | 1 Na_2CrO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KClO_3 | 1 | -1 | -(Δ[KClO3])/(Δt) Na_2CO_3 | 2 | -2 | -1/2 (Δ[Na2CO3])/(Δt) Cr_2O_3 | 1 | -1 | -(Δ[Cr2O3])/(Δt) CO_2 | 2 | 2 | 1/2 (Δ[CO2])/(Δt) KCl | 1 | 1 | (Δ[KCl])/(Δt) Na_2CrO_4 | 2 | 2 | 1/2 (Δ[Na2CrO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[KClO3])/(Δt) = -1/2 (Δ[Na2CO3])/(Δt) = -(Δ[Cr2O3])/(Δt) = 1/2 (Δ[CO2])/(Δt) = (Δ[KCl])/(Δt) = 1/2 (Δ[Na2CrO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: KClO_3 + Na_2CO_3 + Cr_2O_3 ⟶ CO_2 + KCl + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: KClO_3 + 2 Na_2CO_3 + Cr_2O_3 ⟶ 2 CO_2 + KCl + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KClO_3 | 1 | -1 Na_2CO_3 | 2 | -2 Cr_2O_3 | 1 | -1 CO_2 | 2 | 2 KCl | 1 | 1 Na_2CrO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KClO_3 | 1 | -1 | -(Δ[KClO3])/(Δt) Na_2CO_3 | 2 | -2 | -1/2 (Δ[Na2CO3])/(Δt) Cr_2O_3 | 1 | -1 | -(Δ[Cr2O3])/(Δt) CO_2 | 2 | 2 | 1/2 (Δ[CO2])/(Δt) KCl | 1 | 1 | (Δ[KCl])/(Δt) Na_2CrO_4 | 2 | 2 | 1/2 (Δ[Na2CrO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[KClO3])/(Δt) = -1/2 (Δ[Na2CO3])/(Δt) = -(Δ[Cr2O3])/(Δt) = 1/2 (Δ[CO2])/(Δt) = (Δ[KCl])/(Δt) = 1/2 (Δ[Na2CrO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | potassium chlorate | soda ash | chromium(III) oxide | carbon dioxide | potassium chloride | sodium chromate formula | KClO_3 | Na_2CO_3 | Cr_2O_3 | CO_2 | KCl | Na_2CrO_4 Hill formula | ClKO_3 | CNa_2O_3 | Cr_2O_3 | CO_2 | ClK | CrNa_2O_4 name | potassium chlorate | soda ash | chromium(III) oxide | carbon dioxide | potassium chloride | sodium chromate IUPAC name | potassium chlorate | disodium carbonate | | carbon dioxide | potassium chloride | disodium dioxido(dioxo)chromium
| potassium chlorate | soda ash | chromium(III) oxide | carbon dioxide | potassium chloride | sodium chromate formula | KClO_3 | Na_2CO_3 | Cr_2O_3 | CO_2 | KCl | Na_2CrO_4 Hill formula | ClKO_3 | CNa_2O_3 | Cr_2O_3 | CO_2 | ClK | CrNa_2O_4 name | potassium chlorate | soda ash | chromium(III) oxide | carbon dioxide | potassium chloride | sodium chromate IUPAC name | potassium chlorate | disodium carbonate | | carbon dioxide | potassium chloride | disodium dioxido(dioxo)chromium

Substance properties

 | potassium chlorate | soda ash | chromium(III) oxide | carbon dioxide | potassium chloride | sodium chromate molar mass | 122.5 g/mol | 105.99 g/mol | 151.99 g/mol | 44.009 g/mol | 74.55 g/mol | 161.97 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | gas (at STP) | solid (at STP) | solid (at STP) melting point | 356 °C | 851 °C | 2435 °C | -56.56 °C (at triple point) | 770 °C | 780 °C boiling point | | 1600 °C | 4000 °C | -78.5 °C (at sublimation point) | 1420 °C |  density | 2.34 g/cm^3 | | 4.8 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | 1.98 g/cm^3 | 2.698 g/cm^3 solubility in water | soluble | soluble | insoluble | | soluble |  dynamic viscosity | | 0.00355 Pa s (at 900 °C) | | 1.491×10^-5 Pa s (at 25 °C) | |  odor | | | | odorless | odorless |
| potassium chlorate | soda ash | chromium(III) oxide | carbon dioxide | potassium chloride | sodium chromate molar mass | 122.5 g/mol | 105.99 g/mol | 151.99 g/mol | 44.009 g/mol | 74.55 g/mol | 161.97 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | gas (at STP) | solid (at STP) | solid (at STP) melting point | 356 °C | 851 °C | 2435 °C | -56.56 °C (at triple point) | 770 °C | 780 °C boiling point | | 1600 °C | 4000 °C | -78.5 °C (at sublimation point) | 1420 °C | density | 2.34 g/cm^3 | | 4.8 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | 1.98 g/cm^3 | 2.698 g/cm^3 solubility in water | soluble | soluble | insoluble | | soluble | dynamic viscosity | | 0.00355 Pa s (at 900 °C) | | 1.491×10^-5 Pa s (at 25 °C) | | odor | | | | odorless | odorless |

Units